
Quotients in the CIC

Loïc Pottier

LEMME project, INRIA Sophia Antipolis, France
Loic.Pottier@sophia.inria.fr

Abstract. To formalize quotients sets in the Calculus of Inductive Con-
structions, we study several ways: naive quotients (using works of [LW99]
and [BB96] we show that they lead to a contradiction), decidable quo-
tients, classical quotients of type theory (as studied in [Hof95]), and
�nally propose a notion of functionnal quotients which solves problems
of previous notions of quotient, and seems to be convenient theoretically
and practically. For all introduced notions during the paper, we give the
corresponding traduction in the system Coq[pro99].

1 Introduction

We explore some ways to introduce quotients into the Calculus of Inductive
Constructions (CIC)[CH88] [pro99], without extending its formalism. We will
not undertake here an exhaustive theoretical study in type theory of the notion
of quotient and connected notions (extentionnality, subtypes), not more than
we will give a foundation to these notions by syntactic models. This work was
partially carried out by several authors, and the interested reader can consult
[Hof95], [Bou97] or [Bar95], for example.

Our goal is to show that with reasonable assumptions in mathematical prac-
tice, the notion of quotient, which hardly coexists with constructive notions,
can however be adapted in order to be usable and enough powerful to develop
reasonably advanced mathematics in the formalism of the CIC.

In order to avoid possible ambiguities, our development will be translated on
the �y in the system Coq1.

This paper is organized as follow.
We show in the section 2 that if one naively translates the notion of quotient

into type theory (" naive quotients "), one gets to a contradiction. We use for
that works of [LW99] and [BB96].

We then study in the section 3 a restriction of the naive quotients, the "
decidable quotients ", which avoids their inconsistencies, and which is su�ciently
powerful to formalize basic constructions like subtypes, parts of a set, canonical
forms or functional spaces. But this restriction seems too strong, and in this case
consistency is far from being obvious.
1 de�nitions, axioms and theorems, but not the proofs, which are hard to
understand in Coq - scripts or λ-terms -. The complete Coq code can
however be consulted by the interested reader at the following URL:
ftp://ftp-sop.inria.fr/lemme/Loic.Pottier/quotients.tar.gz.

300 L. Pottier

In the section 4, we are interested in the " traditional " quotients of the
literature, in particular those studied by [Hof95], who shows their consistency
by syntactic models. As noticed by M.Hofmann in the same reference, it will be
seen that these quotients cannot treate an elementary construction of quotients
of functional spaces of [Bou70].

In the section 5, we complete the traditional quotients to propose a notion of
" functional quotients " which behaves well with spaces of functions. Although
we do not show it here, it seems that the preceding syntactic models are still
appropriate, then ensuring the consistency of these functional quotients.

We show as an example how they can be used in Coq to build subtypes, with
a rather concise syntax.

Lastly, we conclude, comparing this work with other approaches using only
setoids.

2 Naive quotients

It is shown here that a naive transposition of the mathematical notion of quotient
in the CIC leads to an incoherent situation.

2.1 De�nition

The mathematical practice wants that a quotient set is given by a set and an
equivalence relation: its elements are the equivalence classes of the relation. One
has the canonical surjection which maps an element to its equivalence class.
Although it is not explicitly formulated in for example [Bou70], it is also natural,
when one speaks about an equivalence class, to give oneself an element of this
class. Indeed, one seldom says "let c be an equivalence class ", but rather "let x̄ be
a class" where x is an element of this class. Just like it is natural in mathematics,
when one has a surjective mapping f , to be given, if one needs some, a section
s of this map (i.e. f o s = id). In the case of quotients, this leads to be given a
function which maps each equivalence class to one of its representatives.

Let us transpose all that in type theory: being given a type A and an equiv-
alence relation R on this type, one gives oneself a type Q, two functions class
and choice, with respective types A → Q and Q → A, such that Q with Leibnitz
equality2 is isomorphic to A with R:

∀x : Q, class(choice(x)) == x

∀x : A, choice(class(x)) R x

∀x, y : A, x R y ⇒ class(x) == class(y)

In Coq, this becomes:

2 noted ==

Quotients in the CIC 301

Record type_quotient [A : Type; R : (Relation A);

Prf_equiv : (Equivalence A R)] : Type := {

quo:> Type;

class: A -> quo;

choice: quo -> A;

quo_comp: (x, y : A) (R x y) -> (class x) == (class y);

quo_idset: (x : A) (R (choice (class x)) x);

quo_idQ: (x : quo) (class (choice x)) == x}.

Axiom naive_quotient:

(A : Type) (R : (Relation A)) (Prf_equiv : (Equivalence A R))

(type_quotient Prf_equiv).

Addition of this axiom3, which makes it possible to create new types, is not
without consequences. We will see that it can introduce an inconsistency. First
of all, we are in position to prove some alternatives of the excluded middle. The
method which will follow is drawn from [LW99] (which takes as a starting point
a proof of Goodman and Myhill), according to a suggestion of B.Werner.

2.2 Excluded middle in the sorts Prop, Set and Type

Let us prove �rst the excluded middle in the sort Prop of Coq:

∀P : Prop, P ∨ ¬P

Let P be a proposition. On the type bool = {true, false}, one de�nes a
relation R by x R y ⇔ x == y ∨ P . R is clearly an equivalence relation, with
only one class if P is true, and two if not. Now let Q be the quotient of bool by R,
class and choice the associated maps. It is seen that then choice(class(true)) ==
choice(class(false)) i� P is true. As in bool we can decide if two elements are
equal, we thus obtains P ∨ ¬P .

In Coq this proof becomes:

Variable P:Prop.

Definition eqb := [x, y : bool] x == y \/ P.

Lemma eqb_equiv: (Equivalence bool eqb).

Definition B := (naive_quotient eqb_equiv).

Lemma eqb_dec: (x, y : bool) {x == y}+{~ x == y}.

Lemma middle: P \/ ~ P.

Case (eqb_dec (choice (class B true)) (choice (class B false))).

...Qed.

With the same method, we can show in Coq:

Lemma middle_dec:(P:Prop) {P}+{~ P}.

which means that every proposition is decidable (since the result is in the
sort Set, constructive in the CIC).

In the same way, if one adapts the de�nition of the inductive type sumbool
of Coq to the sort Type, one obtains an excluded middle whose result is in Type.
3 that we will call axiom of the naive quotients

302 L. Pottier

2.3 Proof-irrelevance and inconsistency

In [BB96], it is shown that in the sort Prop the excluded middle together with
the choice make it possible to show proof-irrelevance, in other words that all the
proofs of a proposition are equal:

∀P : Prop,∀p, q : P, p == q

Thanks to the excluded middle in Set obtained by the axiom of the naive
quotients: middle_dec:(P:Prop) {P}+{ P}, and thanks to the fact that the
sort Set is also impredicative we will be able to adapt their proof to the sort
Set.

First of all the axiom of choice becomes given by following projections of the
type sig of Coq:

Definition ex_element :=

[A : Set] [P : A -> Prop] (proj1_sig A [x : A] (P x)).

Definition ex_proof := [A : Set] [P : A -> Prop]

[h : {x : A | (P x)}](proj2_sig A [x : A] (P x) h).

What is essential in the proof of Barbanera and Berardi is the fact that Prop
is impredicative, which makes it possible to build there a version of Russell's
paradox. Initially, using middledec, one de�nes a function IfThenElse on the
propositions:

Section ifthenelse.

Variable A:Prop.

Variable C:Set.

Variables c1, c2 : C.

Definition IfAux: {x : C | x == c1 /\ A \/ x == c2 /\ ~ A}.

...Defined.

Definition IfThenElse :=

(!ex_element C [x : C] x == c1 /\ A \/ x == c2 /\ ~ A IfAux).

End ifthenelse.

Now let Ensemble be a set, ensemble1 and ensemble2 be two of its elements.
We will show that they are equal. The central step consists in building a version
of Russell's paradox, in fact a set U which will contain the set of its parts (power
set). The following construction PowerSet plays the role of the set of parts:

Variable Ensemble:Set.

Variables element1, element2 : Ensemble.

Definition PowerSet := [A : Set] A -> Ensemble.

The set U , which maps to its power set:

Definition U := (X : Set) (PowerSet X).

Definition projU : U -> (PowerSet U) := [u : U] (u U).

Let us note that the term (u U) exists because the sort Set is impredicative
in the CIC: U is itself a set. The reverse injection is more di�cult to de�ne. One
starts by de�ning a notion of retraction:

Quotients in the CIC 303

Definition Id := [A : Set] [x : A] x.

Definition comp :=

[A, B, C : Set] [h : B -> A] [g : A -> B] [x : A] (h (g x)).

Definition e_p_pair :=

[A, B : Set] [g : A -> B] [h : B -> A] (!comp A B A h g) == (!Id A).

The following property 4 states that if X == U then (Powerset X) is a
retraction of (Powerset U), which is false from an intuitionist point of view, but
which is possible here using the excluded middle:

Definition t': (X : Set) {g : (PowerSet X) -> (PowerSet U)

& {h : (PowerSet U) -> (PowerSet X) | X == U -> (e_p_pair g h)}}.

The two functions of this retraction, composed, give the sought injection of
(Powerset U) in U :

Definition phi :=

[X : Set]

(projS1 (PowerSet X) -> (PowerSet U) [g : (PowerSet X) -> (PowerSet U)]

{h : (PowerSet U) -> (PowerSet X) | X == U -> (e_p_pair g h)} (t' X)).

Definition psi := [X : Set](proj1_sig ?

[h] X == U -> (e_p_pair (!phi X) h)

(projS2 ? [g] {h : (PowerSet U) -> (PowerSet X)

| X == U -> (e_p_pair g h)} (t' X))).

Definition injU := [f : (PowerSet U)] [X : Set] (!psi X (!phi U f)).

We verify that the power set of U can be seen as a subset of U , which is the
basis of Russel's paradox:

Lemma injUprojU: (!comp (PowerSet U) U (PowerSet U) projU injU)

== (!Id (PowerSet U)).

Theorem PU_is_retract_U: {g : (PowerSet U) -> U& {h : U -> (PowerSet U) |

(e_p_pair g h)}}.

To �nish Russel's paradox, it is enough to build, using the preceding re-
traction, the part of U made from elements of U which are not contained in
themselves:

Definition belongs := [u, v : U] ((projU v) u) == element1.

Definition RussellClass := [u : U]

4 to prove it,in order to be able to make a rewriting on objects of the sort Set, it
is necessary to add the following axiom: Axiom eqT_rec : (A : Type) (x : A)

(P : A -> Set) (P x) -> (y : A) x == y -> (P y). This constant could be de-
�ned in Coq: eqT_rec = [A:Type; x:A; P:(A->Set); f:(P x); y:A; e:(x==y)]

<P>Cases e of refl_eqT => f end . Indeed eqT is de�ned as an inductive type
with only one constructor, and thus the elimination of this type could be authorized
for the sort Set as it is for the sort Prop (it could certainly also be authorized for
the sort Type). But it is not the case, primarily to preserve the method of extraction
of Coq: the fact of adding the constant eqT_rec to the CIC (or of accepting its
de�nition well) does not introduce inconsistency into the CIC itself ([fol00])

304 L. Pottier

(IfThenElse ~(belongs u u) element1 element2).

Definition r : U := (injU RussellClass).

Lemma proof_irrelevance_set: element2 == element1.

Generalize injUprojU.

...Case (middle_dec (belongs r r))....Qed.

We thus proved ∀A : Set, ∀x, y : A, x == y. In the CIC, this leads to an
inconsistency:

Lemma incoherence:False:=

<False> Cases (<[b:bool](if b then True else False)>

Cases (proof_irrelevance_set bool true false) of refl_eqT => I end)

of end.

In conclusion, the axiom of the naive quotients, helped of the constant eqT_rec,
lead to a contradiction in the sort Set.

Let use note that because we use the impredicativity of Set, in the sort
Type the proof does not work any more, because the Russel's paradox cannot
be formalized.

2.4 Computable canonical form

The existence of naive quotients leads to the existence of an e�ective canonical
form for any equivalence relation, computed by the function f = choice o class.
We have x R y ⇔ f(x) == f(y). We can deduce from this that if Leibnitz
equality is decidable on E, then every equivalence relation on E is also decidable.

2.5 Conclusion

To introduce quotients without precautions into the CIC thus leads to excluded
middles in the three sorts Prop, Set and Type. In the sort Prop that leads to
proof-irrelevance, which is mathematically reasonable. On the other hand, in the
sort Set, one obtains an inconsistency.

A solution would be to eliminate the sort Set from the CIC. It is tempting,
more especially as its principal justi�cation seems to be the current method of
extraction of Coq. Other methods of extraction exist which are not based on Set,
for example [Pot00].

Lastly, the existence of naive quotients provides a function computing canon-
ical forms to any relation of equivalence, and makes it decidable as soon as the
Leibnitz equality is. Which is exaggerated.

3 Decidable quotients

3.1 De�nition

An inexpensive way and which seems reasonable to limit the naive quotients to
avoid the nuisances that they cause is to require that when the Leibnitz equality

Quotients in the CIC 305

is decidable, the equivalence relation by which one quotients is also decidable
(one will call this condition condition of decidability):

Definition is_decidable := [E : Type] [R : (Relation E)]

(x, y : E) (R x y)+ (R x y).

We de�ne in Coq decidable quotients by the same de�nition as for naive
quotients, except that we add the condition of decidability as a parameter. Let
us note that the existence of naive quotients implies that of decidable quotients,
since then an equivalence relation is decidable as soon as the Leibnitz equality
is. Opposite not being obviously true.

Proofs of excluded middle inspired from the proof of Goodman and Myhill
do not work now any more: on bool, one will be able to quotient by the rela-
tion x R y ⇔ x == y ∨ P only if P is decidable (and it is precisely what one
obtained with the naive quotients). One avoids the preceding nuisances then,
mainly the inconsistency in Set. Good news. It remains to see whether the re-
striction brought is not too constraining. One will see now that several signi�cant
cases in practice can be treated with the decidable quotients.

Non decidable Leibnitz equality. If the Leibnitz equality of a type E
is not decidable, then one can quotient by any equivalence relation on E, the
condition of decidablity being satis�ed.

Computable canonical forms. Let us suppose that on a type E the rela-
tion R is de�ned by

x R y ⇔ f(x) == f(y)

where f is a function from E to E. The function f then calculates a canonical
form for R for each element of E. In this case the condition of decidability is easily
veri�ed, and we can thus build a quotient. One can notice that the existence of a
decidable quotient for an equivalence relation leads to the existence of an e�ective
canonical form, as that was the case with the naive quotients. These two notions,
canonical forms and condition of decidability are thus in fact equivalent from the
point of view of the decidable quotients.

Relation equivalent to equality. If the equivalence relation implies the
Leibnitz equality, the condition of decidability is true. This is the case when one
has a property of extentionnality, for example in the three following cases.

Parts of a set. A part of a type E is a predicate on E. Two parts having
the same elements are equal:(∀x : E, P (x) ⇔ Q(x)) ⇒ P == Q, which is a
form of extentionnality on the predicates:5. One can then build the type of the
parts of a type E, like quotient of the type E → Prop by eqP .

Extentionality of functions. We suppose now that two functions whose
values are equal in each point, are equal:(∀x, f(x) == g(x)) ⇒ f == g. One can
then form the quotient of E → F .

Subtypes.We can introduce subtypes as quotients. Being given a type E and
a predicate on E, one can consider the subtype of E made up of the elements of E
which verify P . A way of representing this set is to take the couples (x, p) where
x is in E and p is a proof of P (x). Naturally one will identify two couples with

5 this assumption is made for example in the theory SETS of the basic library of Coq.

306 L. Pottier

the same left component. The condition of decidability does not have any reason
to be veri�ed for all E and P . A way which seems reasonable to make it possible
to carry out is to suppose proof-irrelevance ∀P : Prop, ∀p, q : P, p == q. In
this case one can show the condition of decidability. We then have a notion of
subtype of a type, as quotient by identi�cation of proofs.

3.2 Conclusion

We have seen that the naive quotients lead to an inconsistency of the CIC (mod-
ulo the addition of eqT_rec). The decidable quotients avoid this problem, and
have a certain power of representation (parts of a set, extentionnality of func-
tions, canonical forms, subtypes). But we did not give any model for them,
which would prove their consistency. A priori, the axiom of the decidable quo-
tients could cause, following the example of the axiom of the naive quotients, an
inconsistency of the CIC. In addition, with the decidable quotients, one can quo-
tient in a type with decidable equality only by a decidable equivalence relation,
which can be too restrictive.

4 "Classical" quotients

We will be interested now in the notion of quotient studied by M.Hofmann in
[Hof95]. It has the advantage of having a model (that of the setoids), and to be
rather categorical. Let E be a type and R an equivalence relation on E, we give
ourselves a type Q, a function class of type E → Q, compatible with R. We give
also a way to lift in Q any function from E to any type which is constant on the
equivalence classes of R. Finally, to ensure that class is surjective, we give an
induction principle on Q which says that to show that a property is true for all
elements of Q, it is enough to show it for all the images of elements of E by the
function class. In Coq, that gives:

Record type_quotient [E : Type; R : (Relation E);

Prf_equiv : (Equivalence E R)] : Type := {

quo:> Type;

class: E -> quo;

quo_comp: (x, y : E) (R x y) -> (class x) == (class y);

quo_lift: (F : Type) (f : E -> F) ((x, y : E) (R x y)

-> (f x) == (f y)) -> quo -> F;

quo_lift_prop: (F : Type) (f : E -> F)

(H : (x, y : E) (R x y) -> (f x) == (f y))

(x : E)(!quo_lift F f H (class x)) == (f x);

quo_ind: (P : quo -> Prop) ((x : E) (P (class x)))

-> (y : quo) (P y)}.

Axiom classic_quotient:(E : Type) (R : (Relation E))

(Prf_equiv : (Equivalence E R)) (type_quotient Prf_equiv).

This notion of quotient is not however appropriate for the functional sets.
One cannot indeed build the natural isomorphism which exists between the sets

Quotients in the CIC 307

E → F
R and E−>F

S , where f S g ⇔ ∀x, f(x) R g(x), and that neither in
a direction nor in the other [Hof95]. To build the canonical bijection b from
E−>F

S in E → F
R supposes to lift the function f 7→ class(F) o f . But one has

no possibility to show that it is compatible with the relation R, because this
requires a form of extentionality6. To build its inverse or to show that it exists
is even more problematic: that supposes to be able to build a function from E
to F from of a function of E in F

R , therefore to have a section of the function
class(F), which amounts giving itself naive quotients, which one saw that they
are incoherent. To turn over the problem in all the directions, one realizes that
the extentionality of functions is impossible to circumvent to build the bijection b.
It also allows, with the induction principle quo_ind, to show its injectivity. But it
still misses something to show its surjectivity: (f : E -> (quotient F)) (exT

? [g : (quotient Q)] f == (b g)). We need an induction principle on the
functions which go into the quotient. More generaly, we see that it is not enough
to characterize the functions which start from a quotient, it is also necessary to
characterize those which arrives there. These re�exions lead us to the following
notion of quotient.

5 Functional quotients

We start by supposing the extentionality of functions, which is natural in math-
ematical practice:

Axiom Extentionality :(E,F:Type) (f, g : E -> F)

((x : E) (f x) == (g x)) -> f == g.

More, a slightly weaker form of extentionality7 can be derived from quotients
of [Hof95], showing that extentionnality is deeply associated with quotients.

One can now identify (for the Leibnitz equality) two equal functions in each
point.

Let E be a type and R an equivalence relation on E. The quotient of E by
R is given as a type Q, with a function class from E to Q such that x R y ⇔
class(x) == class(y).

As before, we give a way of lifting any function f from E to F compatible
with R in a function f̂ from Q to F such that f == f̂ o class. We �nally give
an induction principle, more powerful than the precedent:

∀G, ∀P : (G → Q) → Prop, (∀g : G → E,P (class o g)) ⇒ ∀f : G → Q,P (f)

In Coq, that gives:

Record type_quotient [E : Type; R : (Relation E);

Prf_equiv : (Equivalence E R)] : Type := {

quo: Type;

class: E -> quo;

6 this is (∀x, f(x) == g(x))⇒ λx class(f(x)) == λx class(g(x))
7 (∀x, f(x) == g(x))⇒ (λx f(x)) == (λx g(x))

308 L. Pottier

quo_comp: (x, y : E) (R x y) -> (class x) == (class y);

quo_comp_rev: (x, y : E) (class x) == (class y) -> (R x y);

quo_lift: (F : Type) (f : E -> F) (compatible R f) -> quo -> F;

quo_lift_prop: (F : Type) (f : E -> F) (H : (compatible E f))

(comp (quo_lift F f H) class) == f;

quo_ind_fun_left: (G : Type) (P : (G -> quo) -> Prop)

((f : G -> E) (P (comp class f))) -> (f : G -> quo) (P f)}.

Axiom quotient:(E : Type)(R : (Relation E))

(Prf_equiv : (Equivalence E R)) (type_quotient E).

5.1 Some consequences

The induction principle quo_ind_fun_left makes it possible to characterize
the functions which arrive in a quotient: they factorize all with the function
class8.

It is possible to show the induction principle of the section 4, i.e. the quotient
does not have other elements than the images of the function class:

Variable E:Type.

Variable R:(Relation E).

Variable Prf_equiv:(Equivalence E R).

Definition Q := (quotient Prf_equiv).

Lemma quo_ind: (P : Q -> Prop) ((x : E) (P (class x)))

-> (y : Q) (P y).

Moreover one can show that the functions which start from the quotient are
all liftings of compatible functions:

Lemma quo_ind_fun_right: (F : Type) (P : (Q -> F) -> Prop)

((f : E -> F) (H : (compatible R f)) (P (quo_lift H)))

-> (f : Q -> F) (P f).

5.2 The problematic example is solved

Finally the example against which butted the traditional quotients is solved here,
as one will show it now.

Let E and F be two types, R an equivalence relation on F , and S the equiv-
alence relation on E → F de�ned by f S g ⇔ ∀X, f(x) R g(x).

We build the function b from E→F
s to E → F

R as the lifting of the func-
tion f 7→ class(F) o f , once shown that it is compatible with the relation S
(what uses the axiom of extentionnality). To show that b is injective also works
thanks to the extentionnality. The surjectivity of b is obtained with the principle
quo_ind_fun_left and again the extentionnality.

8 but it is impossible to build this factorization, if not there would be a section of the
function class.

Quotients in the CIC 309

This example is in a certain way generic. It shows the necessary compatibility
between two operations on types: on the one hand formation of functions, and
on the other hand formation of quotients. In the form of equation on types it
results in:

E → F

R
=

E− > F

E− > R

where E → R is the relation S.
We could have taken this equation between types to complete the quotients

of the section 4. But on the one hand that would not have been su�cient for
lack of extentionnality, and on the other hand it had been exaggerated: it is
not reasonable to identify two isomorphic types (in any case this is not done in
mathematics).

5.3 Application in Coq: subtypes

Functional quotients works well in the system Coq. As an example we will build
a notion of subtype. Thanks to the mechanism of coercions of Coq, we will
obtain in this case a rather clear and not very verbose syntax, close to the
mathematical practice. We also use the notion of setoid existing in the library
of Coq to represent the sets provided with an equivalence relation. Thanks to
coercions, one can see a setoid as a type (its support), or as a binary relation (its
equivalence relation), or as a proof that its relation is an equivalence relation.

The de�nition of the functional quotients adapts as follows:

Require Export Setoid.

Implicit Arguments On.

Coercion Equal : Setoid >-> Relation.

Record type_quotient [E : Setoid] : Type := {

quo:> Type;

class:> E -> quo;

quo_comp: (x, y : E) (Equal x y) -> (class x) == (class y);

quo_comp_rev: (x, y : E) (class x) == (class y) -> (Equal x y);

quo_lift: (F : Type) (f : E -> F) (compatible E f) -> quo -> F;

quo_lift_prop: (F : Type) (f : E -> F) (H : (compatible E f))

(comp (quo_lift F f H) class) == f;

quo_ind_fun_left: (G : Type) (P : (G -> quo) -> Prop)

((f : G -> E) (P (comp class f)))

-> (f : G -> quo) (P f)}.

Axiom quotient:(E : Setoid) (type_quotient E).

Coercion quotient : Setoid >-> type_quotient.

Three coercions are de�ned here for the quotients. The �rst, quo, allows
quotient to be used as a type. The second, class, makes it possible to see a
quotient as a function (its function class). Lastly, the third, quotient, makes it
possible to see a Setoid as a quotient.

310 L. Pottier

Let us de�ne now subtypes.
We start with a de�nition which can seem stupid:

Record TYPE : Type := {

TYPE_Type:> Type}.

This is purely technical, to allow for example a function f of type F → E
where E is a type variable, to be used as a coercion, which is impossible in Coq

with such a type ending with a variable. Because if E is rather of type TY PE
(what is equivalent, in fact), then the type of f is F → (TY PE_Type E), and
f can become a coercion arriving in the class9 TY PE_Type.

We now de�ne the subtype of the elements of a type E which verify a pred-
icate P . We start from the type whose elements are dependent couples (x, p),
where x is in E and p is a proof of P (x). We identify two couples which have
the same �rst component, which gives an equivalence relation, and, therefore, a
setoid. It remains to take the quotient of it: we have a function which with any
type and with any predicate associates a type which is not di�erent from the
required subtype.

Section Definition_of_subtypes.

Variable E:TYPE.

Variable P:E -> Prop.

Record subtype_carrier : Type := {

elt:> E;

prf: (P elt)}.

Definition subtype_eq := [x, y : subtype_carrier] (elt x) == (elt y).

Definition subtype_setoid: Setoid.

Apply (!Build_Setoid subtype_carrier subtype_eq) .

...

Defined.

Definition subtype := (quo (quotient subtype_setoid)).

End Definition_of_subtypes.

Let us note that the function elt is a coercion: it makes it possible to see a
couple (x, p) as an element of E. Let us carry out some basic constructions with
this notion of subtype:

Section Tools_for_subtypes.

Variable E:TYPE.

Variable P:E -> Prop.

Lemma elt_compatible: (compatible (subtype_setoid P) (!elt E P)).

Canonical injection from the subtype into the type:

Definition subtype_inj : (subtype P) -> E := (quo_lift elt_compatible).

The restriction of a function of domain E to the de�ned subtype:

9 with the de�nition of classes in coercions of Coq

Quotients in the CIC 311

Definition restrict := [F : Type] [f : E -> F] (comp f subtype_inj).

End Tools_for_subtypes.

Coercion subtype_inj : subtype >-> TYPE_Type.

We can write and show easily the following properties:

Section Tools_for_subtypes2.

Variable E:TYPE.

Variable P:E -> Prop.

Lemma subtype_prop: (c : (subtype P)) (P c).

We could write (Pc) because the canonical injection is a coercion.

Definition subtype_partial_inj: (x : E) (P x) -> (subtype P)

:=[x:E][H:(P x)]((quotient (subtype_setoid P)) (Build_subtype_carrier H)).

Here, the quotiented subtype (quotient (subtype_setoid P)) is used, by coer-
cion, as its function class. The function Build_subtype_carrier is not di�erent
than the single constructor of the inductive type subtype_carrier. We show that
the canonical injection is injective, that it has a retraction, and that one has a
proof irrelevance for subtypes:

Lemma subtype_surj_inj: (c : (subtype P))

(subtype_partial_inj (subtype_prop c)) == c.

Lemma subtype_inj_is_injective: (x, y : (subtype P))

(subtype_inj x) == (subtype_inj y) -> x == y.

Lemma subtype_partial_inj_pro: (x : E) (h : (P x))

(subtype_inj (subtype_partial_inj h)) == x.

Lemma subtype_proof_irrelevance: (x : E) (h, h' : (P x))

(subtype_partial_inj h) == (subtype_partial_inj h').

End Tools_for_subtypes2.

5.4 Consistency

The syntactic model of the setoids of [Hof95] is a natural candidate to be a
model of the functional quotients. It seems also that ω-sets should provide correct
models for functional quotients: this is a subject we are currently investigating.

6 Conclusion

The notion of quotient seems irreducible in mathematics. It still gives problem
in type theory. With this study of various ways to introduce quotients, we hope
to have shown that the CIC is, without extention of its language, and with
addition of axioms which seems consistent, su�cient to formalize a notion of
quotients at the same time close to the mathematical practice and usable in a
system such as Coq. Indeed, the quotients such as they are de�ned in the section

312 L. Pottier

5 are compatible with the notion of function, which missed with the preceding
notions. It remains however to give a proof of consistency to the axioms which
de�ne them. What should be obtained by taking as a starting point the work of
[Hof95].

We will �nish by noticing that if one wants to abstain from introducing quo-
tients types in type theory, one is obliged to work with sets with equivalence
relations, i.e. setoids. The developments are then rather tiresome. To be con-
vinced, one can consult [Pot99] or [GPWZ00]. To work with setoids however
makes it possible to form quotients of setoids easily: it is enough to change the
equivalence relation. But this advantage seems small compared with the disad-
vantages. Indeed, since a quotient is not a type, one loses the construction of
functions by simple abstraction (one must show that the functions which one
de�nes on the setoids are compatible with the associated equivalence relations).
One loses also the power of the rewritings by Leibnitz equality: one can change
a subterm by an equivalent subterm only if all the functions of the context are
compatible with the equivalence relations. It follows a heaviness in the proofs
which proves to be expensive, even crippling or ridiculous from a mathematical
point of view.

References

[Bar95] G. Barthe. Extensions of pure type systems. In M. Dezani-Ciancaglini
and G. Plotkin, editors, Proceedings of TLCA'95, volume 902, pages 16�31.
Springer-Verlag, 1995.

[BB96] F. Barbanera and S. Berardi. Proof-Irrelevance out of Exluded-Middle and
Choice in the Calculus of Constructions. Journal of Functional Program-

ming, pages 519�525, 1996.
[Bou70] N. Bourbaki. Théorie des ensembles. 1970.
[Bou97] S. Boutin. Ré�exions sur les quotients. PhD thesis, Thèse de doctorat,

Université de Paris 7, 1997.
[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Infor-

mation and Computation, 76(2/3):95�120, February/March 1988.
[fol00] Coq's folklore. �eqT_rec is safe�. 2000.
[GPWZ00] H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. Squeleton for the

proof development leading to the fundamental theorem of algebra. page
http://www.cs.kun.nl/ herman/FTA.mathproof.ps.gz, 2000.

[Hof95] M. Hofmann. Extensional concepts in intensional type theory. PhD thesis,
PhD thesis, LFCS Edinburgh, 1995.

[LW99] S. Lacas and B. Werner. Which choices imply the Excluded Middle? pre-

print, 1999.
[Pot99] L. Pottier. Basic notions of algebra. The users' contributions of the Coq sys-

tem, page http://pauillac.inria.fr/coq/contribs/algebra.tar.gz,
1999.

[Pot00] L. Pottier. Extraction dans le CCI. Rapport de recherche INRIA, RR-4026,
oct 2000.

[pro99] The Coq project. The coq proof assistant, reference manual.
page http://pauillac.inria.fr/coq/doc/main.html, 1999.

