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Abstract. In this work we develop a formalization of matrix arithmetic
in Acl2 adequate for the speci�cation and certi�cation, with a high
degree of automation, of Strassen's matrix multiplication algorithm. We
restrict our attention here to square matrices whose dimension is a power
of two. The fundamental properties of this matrix ring have been proved
and some experimental results on execution times, including the deter-
mination of the optimal threshold, are presented. We also discuss the
nature of the induction schemes involved in the proofs.

1 Introduction

In this paper we present a formalization of matrix arithmetic. We restrict our
attention here to square matrices over the �eld of complex rational numbers. We
also require that their dimensions are a power of two since this allows us to use
a convenient recursive representation for them. From a theoretical viewpoint,
this can be done without loss of generality since matrices can be completed to
accomplish this.

On the other hand, our choice is justi�ed by the fact that this representation
is in the heart of some important algorithms belonging to the Strassen-Pan-
Coppersmith-Winograd [14, 15, 13, 5] family of sub-cubic matrix multiplication
algorithms.

In particular, we formalize here Strassen's algorithm which we have certi�ed
by proving its equivalence to the classical algorithm. This was the �rst sub-
cubic algorithm for matrix multiplication known and its discovery in 1969 by
V. Strassen [14] broke a long standing belief about the cubic complexity of
matrix multiplication and some important related problems.

As far as we know, general matrices have been formalized in the Mizar sys-
tem [6, 7] where matrix multiplication is de�ned in the usual way.

The formalism we use to reason about matrix arithmetic is that of Acl2 [9,
10]. From a logic viewpoint,Acl2 is an untyped quanti�er-free �rst-order logic of
total recursive functions with equality. It only contains two extension principles.
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These extension principles allow the introduction of new function symbols and
axioms to the logic while preserving its consistency.

Our main aim has been to provide Acl2 with a reusable book of basic matrix
operations and theorems about them. But, at the same time, these operations are
not devised as mere operational abstractions. They are written in an applicative
subset of Common Lisp, and therefore they are executable.

Since Acl2 is a rule-driven theorem prover, theorems are operationally in-
terpreted as rewrite rules. Therefore, some supplementary theorems that are
useful as rewrite rules have been identi�ed and proved in addition to the basic
properties. These rewrite rules play a major role in proving the correctness of
Strassen's algorithm.

We have also carried out some experiments. The results obtained from them
allow us to compare the performance of the classical multiplication algorithm
and Strassen's algorithm under Acl2. The empirical optimal threshold is also
obtained for the latter algorithm.

Finally, we discuss the degree of automation achieved and we also analyze
some possible extensions of this work, including a brief overview of the problems
involved in the generalization of the element �eld to obtain matrix rings over
di�erent algebraic structures.

2 An Overview of Acl2

Acl2 (A Computational Logic for Applicative Common Lisp) is the successor of
Nqthm [1, 3], the Boyer-Moore theorem prover. A concise description of Acl2
can be found in [8]. In fact, it is necessary to approach Acl2 from three di�erent
perspectives to fully understand it.

2.1 Acl2 is a Computational Logic

Acl2 is a �rst-order quanti�er-free logic with equality. Its syntax is that of the
Lisp programming language. This means that a term in the logic is a constant, a
variable symbol or the application of a n-ary function symbol (or a λ-expression)
to n terms. Formally speaking, predicate symbols in Acl2 do not exist, though
Boolean functions play this role.

In Acl2, the set of axioms include those of propositional logic with equality
and some basic axioms that are needed to work with the usual data types: num-
bers (integers, rationals and complex rationals)1, characters, strings, symbols
and lists.

On the other hand, inference rules are the same that in propositional calculus
with equality, adding variable instantiation, induction and functional instanti-
ation. The induction rule reduces theorem proofs to �nite sets of cases by a

1 An extension of Acl2 has been developed to cope with real number formalization
problems.
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powerful form of mathematical induction on ε0-ordinals. We can replace func-
tion symbols in a theorem with other function symbols by using the functional

instantiation rule.
The logic also includes two extension principles: the de�nitional principle

and the encapsulation principle. The former is essential because it allows the
introduction of new function symbols with an axiomatic de�nition; to preserve
consistency, the system only admits a function under this principle if its ter-
mination can be guaranteed under certain conditions.2 The latter permits the
introduction of new function symbols constrained by axioms; to preserve con-
sistence, Acl2 requires �witnesses� of the existence of these functions to be ex-
posed. Functional instantiation is an inference rule derived from this extension
principle.

The lack of quanti�cation renders Acl2 a constructive logic. Instead of stat-
ing the fact that a certain object exists, a function computing an object with
the desired properties must be shown. Another remarkable point is the lack of
types3 and of partial functions. Functions admitted under the de�nitional prin-
ciple must be total recursive functions (however, see [11].)

2.2 Acl2 is an Applicative Programming Language

EveryAcl2 function admitted under the de�nitional principle is a Lisp function.
The reciprocal does not hold because the execution of a function must only
depend on their arguments if we want to reason about it in Acl2. On the other
hand, functions written in conventional programming languages (Lisp not being
an exception) are not guaranteed to terminate.

Thus, we can think of Acl2 as an applicative programming language, that
is, a language in which the result of the application of a function is uniquely
determined by its arguments. More precisely, Acl2 can be regarded as a side-
e�ect free subset of Common Lisp.

2.3 Acl2 is an Automated Reasoning System

When you supply a potential theorem to Acl2, or when you extend the logic
by using one of the extension principles, it is necessary to check that several
conditions hold. Then, Acl2 behaves as a theorem prover.

Acl2 uses several proof techniques when trying to prove a theorem. Each
proof technique can be viewed as a �process� receiving a formula as its input
and producing a set of formulas as its output. The input formula is a theorem
if each of the output formulas is a theorem.

Of course, a particular process may not apply to a formula. In this case, the
output set of the process only consists of that particular formula. On the other
2 This guarantees the existence of one, and only one, mathematical function holding
the de�nitional axiom.

3 However, a primitive type inference system is build into Acl2. The user can help
the system to infer types by supplying type prescription rules. Types are just used
to simplify formulas.
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hand, if a process proves that a given formula is a theorem then it returns an
empty set.

When the user inputs a conjecture into the system, the formula becomes
the proof goal and it goes sequentially through every process until one of them
applies or some termination conditions are met. When a process is applied, it
produces a set of subgoals that replaces the original goal. This procedure is then
iterated while there are subgoals pending to be proved.

The simpli�cation process includes decision procedures for propositional logic,
equality, and linear arithmetic. It also deals with term rewriting and metafunc-
tions [2]. This is the only process that may return an empty set of formulas,
thus proving that its input formula is a theorem. The term rewriting system
plays a fundamental role: axioms, de�nitions and theorems are stored and used
as rewrite rules.

The destructor elimination process allows to replace variables a�ected by
destructor operations with a term consisting of a constructor operation and
fresh variables. Thus, this eliminates destructor operations to obtain simpler
formulas.

The three following processes have a strong heuristic component. The crossed
fertilization process decides when to use and discard equality hypotheses. The
generalization process decides when to replace non-variable terms with fresh
variables. The irrelevance elimination process tries to discard those hypotheses
not a�ecting the validity of the conjecture. All of them are �dangerous� processes,
in the sense that a more general conjecture is obtained when discarding an
hypothesis or generalizing a term. The generalized conjecture may well not be a
theorem even if the original conjecture is a theorem. Its main aim is to prepare
the formula for a later induction since, in order to prove a formula by induction,
it is not unusual that a generalization of it may be needed.

The last process is induction. It tries to �nd a suitable induction scheme to
prove the conjecture. Conjecture terms may suggest several induction schemes,
but system heuristics select a unique scheme (perhaps, after merging some of
them). If this process does not �nd a suitable induction scheme, it fails, and
Acl2 reports that the conjecture has not been proved.

3 Matrix Representation

The underlying representation of matrices is based on the notion of weak matrix.
We use record structures for this purpose, which come from Common Lisp

and have been formalized in Acl2 by Brock [4]. This provides us with a weak
recognizer predicate that we strengthen to develop a recognizer for properly
formed matrices.

The set of elements used to de�ne matrices is recognized by an Acl2 predi-
cate that includes arbitrary precision complex rational numbers. Since Acl2 is
an untyped programming language, this implies that integers and rationals may
well replace complex rationals, without needing a single change.
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A structure is just a convenient way to group and access related data. The
defstructure facility is a general purpose tool for creating and reasoning about
structure speci�cations.

Our notion of weak matrix is captured by an Acl2 structure. A weak matrix
is just a collection of four objects or slots called �submatrices�. We say that this
notion is �weak� because no restrictions are imposed on the types of the elements
that can be stored in each submatrix.

The following invocation of defstructure de�nes a constructor operation,
matrix, and four destructor operations, sub-11, sub-12, sub-21 and sub-22.
It also creates an extensive theory for automated reasoning about speci�cations
de�ned in terms of this structure (see [4]). The predicate weak-matrixp will
recognize terms constructed with matrix.

(defstructure matrix

sub-11 sub-12

sub-21 sub-22

(:options

(:conc-name nil)

(:weak-predicate weak-matrixp)))

A consequence of the weakness of the previous de�nition is the lack of a
uniform representation even if we restrict ourselves to use only weak matrices
and numbers in every slot.

We formalize true matrices by de�ning a recognizer function for square ma-
trices whose dimension is a power of two. At �rst sight, this may be seen as a
restriction, but an arbitrary matrix can always be �completed�, at most doubling
its size, so that its dimension is a power of two. This is a common choice for
several of the most e�cient algorithms known for dense matrix arithmetic.

Therefore, we represent a matrix with dimension n = 2k as a weak matrix
of matrices with dimension n = 2k−1 if n 6= 1, otherwise as a number. This
de�nition implies that our matrices have a complete tetrary tree structure of
matrix constructors. The following Boolean function recognizes such a matrix.

(defun matrixp (a k)

(if (zp k)

(acl2-numberp a)

(let ((k-1 (- k 1)))

(and (weak-matrixp a)

(matrixp (sub-11 a) k-1) (matrixp (sub-12 a) k-1)

(matrixp (sub-21 a) k-1) (matrixp (sub-22 a) k-1)))))

Acl2 functions are untyped and must be total. As a consequence, if we want
matrixp to be admitted under the de�nitional principle then it must provide an
answer even in the case that k is not a natural number. From a logical viewpoint,
(zp k) ≡ k /∈ IN∨k = 0. Thus we can say that non-natural values of k are simply
regarded as 0 by matrixp.

This recognizer function is admitted by Acl2 without any user assistance.
We can also prove theorems stating that the submatrices of a true matrix whose
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dimension is greater than one are also true matrices (with half the dimension).
This is done without any e�ort. For example:

(defthm matrixp-sub-11

(implies (and (matrixp a k) (not (zp k)))

(matrixp (sub-11 a) (- k 1))))

4 Ring Structure

Having selected a representation for matrices, we should now show that it is
suitable for devising the usual operations and proving their properties.

The symbols +m, -m, -s, *m will stand for matrix addition, negation, subtrac-
tion and multiplication operations. On the other hand, null and identity will
represent the null and identity matrices, respectively.

4.1 Operations

The recursive representation chosen produces elegant recursive formulations of
the usual matrix operations. To begin with, the addition of two matrices is
accomplished by recursively adding their submatrices pairwise.

(defun +m (a b k)

(if (zp k)

(+ a b)

(let ((k-1 (- k 1)))

(matrix (+m (sub-11 a) (sub-11 b) k-1)

(+m (sub-12 a) (sub-12 b) k-1)

(+m (sub-21 a) (sub-21 b) k-1)

(+m (sub-22 a) (sub-22 b) k-1)))))

The de�nition and admission of matrix negation and matrix subtraction are
straightforward.

(defun -m (a k)

(if (zp k)

(- a)

(let ((k-1 (- k 1)))

(matrix (-m (sub-11 a) k-1) (-m (sub-12 a) k-1)

(-m (sub-21 a) k-1) (-m (sub-22 a) k-1)))))

(defun -s (a b k)

(if (zp k)

(- a b)

(let ((k-1 (- k 1)))

(matrix (-s (sub-11 a) (sub-11 b) k-1)

(-s (sub-12 a) (sub-12 b) k-1)

(-s (sub-21 a) (sub-21 b) k-1)

(-s (sub-22 a) (sub-22 b) k-1)))))
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Following this style, we can de�ne matrix multiplication in a way that re-
sembles the classical method of multiplying two 2× 2 matrices.

(defun *m (a b k)

(if (zp k)

(* a b)

(let ((k-1 (- k 1))

(a11 (sub-11 a)) (a12 (sub-12 a))

(a21 (sub-21 a)) (a22 (sub-22 a))

(b11 (sub-11 b)) (b12 (sub-12 b))

(b21 (sub-21 b)) (b22 (sub-22 b)))

(matrix (+m (*m a11 b11 k-1) (*m a12 b21 k-1) k-1)

(+m (*m a11 b12 k-1) (*m a12 b22 k-1) k-1)

(+m (*m a21 b11 k-1) (*m a22 b21 k-1) k-1)

(+m (*m a21 b12 k-1) (*m a22 b22 k-1) k-1)))))

The null matrix of a given dimension is computed from four null submatrices.
The identity matrix is computed from two identity submatrices and two null
submatrices.

(defun null (k)

(if (zp k)

0

(let ((null (null (- k 1))))

(matrix null null null null))))

(defun identity (k)

(if (zp k)

1

(let ((null (null (- k 1)))

(identity (identity (- k 1))))

(matrix identity null null identity))))

Acl2 admits these functions under its de�nitional principle automatically. It
also proves that they are closed operations without any assistance. For example:

(defthm matrixp-*m

(matrixp (*m a b k) k))

4.2 Guard Veri�cation and Execution

Although Acl2 assigns a logical meaning to every expression, Common Lisp

functions are partial in nature. Acl2 provides �guards� as a mean of specifying
the intended domain of functions. This allows us to indicate function precondi-
tions as predicates. We have used the following guard speci�cations in our matrix
operations:

1. (naturalp k) for nullary operations.
2. (and (naturalp k) (matrixp a k)) for unary operations.
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3. (and (naturalp k) (matrixp a k) (matrixp b k)) for binary operations.

Guards are extralogical artifacts. They are not part of the de�nitions of
functions nor a�ect the proofs of theorems where guarded functions are used.
Guards are related to execution.

Having veri�ed guards we can assure that our functions are executable in their
guarded domains. Functions will be evaluated by Common Lisp without any
execution error (provided there are enough computational resources available)
whenever their inputs satisfy their guards. Moreover, they will produce the same
results on any Common Lisp compliant platform.

4.3 Ring Properties

In order to be proved by Acl2, some of the ring properties require induction
hints. The most complex of these induction schemes are de�ned separately and
they are discussed in Sect. 6. Furthermore, some proofs can be shortened by
specifying more suitable induction schemes than those selected automatically by
the system, though we will not discuss this aspect here.

Most properties can be proved as unconditional theorems. However, a few of
them require hypotheses.

Associativity of matrix addition requires an induction scheme. On the other
hand, commutativity of matrix addition can be proved without any user guid-
ance.

(defthm associativity-of-+m

(equal (+m (+m a b k) c k) (+m a (+m b c k) k)))

(defthm commutativity-of-+m

(equal (+m a b k) (+m b a k)))

The null matrix is shown to be an identity element of matrix addition. The
order in which the theorems are proved allows the second theorem to be reduced
to the �rst one by using the commutativity theorem previously proved.

(defthm null-identity-of-+m-2

(implies (matrixp a k)

(equal (+m a (null k) k) a)))

(defthm null-identity-of-+m-1

(implies (matrixp a k)

(equal (+m (null k) a k) a)))

We can also automatically prove that matrix negation is an inverse of matrix
addition. Again, the proof order allows the second theorem to be reduced to the
�rst one.

(defthm -m-inverse-of-+m-2

(equal (+m a (-m a k) k) (null k)))
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(defthm -m-inverse-of-+m-1

(equal (+m (-m a k) a k) (null k)))

Distributivity of matrix multiplication over matrix addition is proved by
using two separate induction schemes. Since matrix multiplication is not com-
mutative, we cannot reduce one of the theorems to the other.

(defthm distributivity-of-*m-over-+m-1

(equal (*m a (+m b c k) k) (+m (*m a b k) (*m a c k) k)))

(defthm distributivity-of-*m-over-+m-2

(equal (*m (+m a b k) c k) (+m (*m a c k) (*m b c k) k)))

The proof of the associativity of matrix multiplication uses a complex in-
duction scheme. It also requires several of the previous theorems (notably, the
distributivity of the multiplication over the addition).

(defthm associativity-of-*m

(equal (*m (*m a b k) c k) (*m a (*m b c k) k)))

Finally, we must prove that the identity matrix is an identity element of the
matrix multiplication operation.

(defthm identity-identity-of-*m-1

(implies (matrixp a k)

(equal (*m (identity k) a k) a)))

(defthm identity-identity-of-*m-2

(implies (matrixp a k)

(equal (*m a (identity k) k) a)))

4.4 Additional Properties

An elemental property that we can prove automatically states that matrix nega-
tion of a null matrix is also a null matrix.

(defthm -m-null-is-null

(equal (-m (null k) k) (null k)))

The following theorems are also interesting. They prove that the null matrix
is a cancellative element of matrix multiplication.

(defthm null-cancellative-of-*m-1

(equal (*m (null k) a k) (null k)))

(defthm null-cancellative-of-*m-2

(equal (*m a (null k) k) (null k)))
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5 Useful Rewrite Rules

In addition to the usual interpretation of theorems, each theorem can be un-
derstood as a (possibly conditional) rewrite rule. This dual character leads to
an operational view of theorems as rules. As a rewrite rule, the following the-
orem promotes the elimination of (-s a b k) in favor of (+m a (-m b k) k)
for arbitrary a, b and k terms:

(defthm -s->-m

(equal (-s a b k) (+m a (-m b k) k)))

The next theorem states that matrix negation is idempotent. This allows the
prover to eliminate consecutive applications of the negation operator during the
development of a proof on matrices. In this case, it needs an hypothesis, that is,
a conditional rewrite rule is obtained.

(defthm idempotency-of--m

(implies (matrixp a k)

(equal (-m (-m a k) k) a)))

The distributivity of matrix negation over matrix addition is a fact that the
prover states without any problem. As a rewrite rule, this allows to push the
negation operator into the addition operator.

(defthm distributivity-of--m-over-+m

(equal (-m (+m a b k) k) (+m (-m a k) (-m b k) k)))

Another interesting rewrite rule introduces matrix negation inside matrix
multiplication. A technical lemma is required to prove the associated theorem.
This lemma uses an instance of the distributivity of the multiplication over the
addition of numbers4 and the linear arithmetic decision procedure.

(defthm introduce--m-inside-*m

(equal (-m (*m a b k) k) (*m a (-m b k) k)))

Finally, the following rule prevents topmost occurrences of negation operators
in the �rst parameter of a multiplication operator during a proof. It shifts-right
matrix negation inside matrix multiplication. Similarly to the previous rule, it
uses a simple arithmetic property that requires some trickery to be proved. An
induction hint is necessary to complete the proof.

(defthm shift--m-inside-*m

(equal (*m (-m a k) b k) (*m a (-m b k) k)))

The combination of these rewrite rules is useful in a certain sense: it al-
lows a kind of �normalization� of the negation operator occurrences in a matrix
expression.

4
Acl2 includes the following distributivity axiom which is suitable for numbers:
(equal (* x (+ y z)) (+ (* x y) (* x z))).
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6 Induction Schemes

One of the highlights of Acl2 is its ability to guess suitable induction schemes
during the development of a proof. We have found that some of the matrix ring
properties presented resist Acl2 heuristic e�orts. For example, let us consider
the following induction scheme:5

(defsch associativity-of-+m-scheme (a b c)

(sub-11 a) (sub-11 b) (sub-11 c)

(sub-12 a) (sub-12 b) (sub-12 c)

(sub-21 a) (sub-21 b) (sub-21 c)

(sub-22 a) (sub-22 b) (sub-22 c))

This scheme is used as an induction hint to prove associativity-of-+m.
Acl2 guarantees its correction since it has to be admitted under the de�nitional
principle before it can be used. The hint suggests that the inductive proof may
consist of a base case and an inductive step with four induction hypotheses. It
can be interpreted in the following way:

�Given a property stated on three matrices, we must prove it for matrices
having dimension n = 20 and, in order to prove the property for matrices
whose dimension is n = 2k, where k ∈ IN∗, we may use the fact that it
holds for certain triplets of submatrices with dimension n

2 = 2k−1.�

As we can see here, this is a sort of multiple structural induction on the
arguments. The base case is just a property on numbers since we recognize 1×1
matrices using acl2-numberp. But the point is that we need to specify which
particular triplets of submatrices are involved in the inductive step. That is why
we include four triplets to prove the associativity of matrix addition, one for
each pair of entries in the following matrix identity:[

(a11 + b11) + c11 (a12 + b12) + c12

(a21 + b21) + c21 (a22 + b22) + c22

]
︸ ︷︷ ︸

(A+B)+C

=
[
a11 + (b11 + c11) a12 + (b12 + c12)
a21 + (b21 + c21) a22 + (b22 + c22)

]
︸ ︷︷ ︸

A+(B+C)

A similar problem appears with distributivity-of-*m-over-+m-1. Here,
the induction scheme is more complex and the number of hypotheses increases
to 8. An analogous scheme is used with distributivity-of-*m-over-+m-2. The
proof of associativity-of-*m is the most complex proof obtained: it requires 16
induction hypotheses. For the sake of brevity, we will omit these schemes.

In fact, we can merge all these induction schemes to obtain a single in-
duction scheme that is valid to prove the four properties. Nevertheless, this is a
rather complex scheme6 consisting of 26 induction hypotheses. We arrive at them
by joining the triplets of the four induction schemes and discarding duplicated
triplets.
5
Acl2 does not include defsch. This tool has been developed by the authors to add
syntactic sugar to the speci�cation of structural induction schemes for matrix tuples.

6 We have noticed a considerable increase of proof times when using this merged
induction scheme.
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7 Strassen's Algorithm

Next, we present a translation of Strassen's algorithm to our matrix formaliza-
tion. Let us consider k0 as an arbitrary threshold (the algorithm switch to the
classical algorithm when the input matrices are su�ciently small). We defer the
suitable selection of this threshold to Sect. 8.

(defun *s (a b k)

(if (zp k)

(* a b)

(if (<= k (k0))

(*m a b k)

(let* ((k-1 (- k 1))

(a11 (sub-11 a)) (a12 (sub-12 a))

(a21 (sub-21 a)) (a22 (sub-22 a))

(b11 (sub-11 b)) (b12 (sub-12 b))

(b21 (sub-21 b)) (b22 (sub-22 b))

(m1 (*s (-s a12 a22 k-1) (+m b21 b22 k-1) k-1))

(m2 (*s (+m a11 a22 k-1) (+m b11 b22 k-1) k-1))

(m3 (*s (-s a11 a21 k-1) (+m b11 b12 k-1) k-1))

(m4 (*s (+m a11 a12 k-1) b22 k-1))

(m5 (*s a11 (-s b12 b22 k-1) k-1))

(m6 (*s a22 (-s b21 b11 k-1) k-1))

(m7 (*s (+m a21 a22 k-1) b11 k-1))

(c11 (+m (-s (+m m1 m2 k-1) m4 k-1) m6 k-1))

(c12 (+m m4 m5 k-1))

(c21 (+m m6 m7 k-1))

(c22 (-s (+m (-s m2 m3 k-1) m5 k-1) m7 k-1)))

(matrix c11 c12 c21 c22)))))

In order to certify its correctness, we take the classical algorithm as our
speci�cation reference and try to prove the following equivalence theorem:

(defthm *s<->*m

(implies (and (matrixp a k) (matrixp b k))

(equal (*s a b k) (*m a b k))))

Obviously, this theorem fails because the system lacks enough knowledge on
matrix arithmetic. Ideally, we would like to build a decision procedure for matrix
arithmetic in Acl2, perhaps using metafunctions, but this is not an easy task.
However, we can overcome this problem by using suitable rewrite rules. Let us
consider matrix expressions appearing in Strassen's algorithm.

1. Subtraction can be eliminated in favor of addition and negation by -s->-m.
2. Subtraction-free expressions can be reduced to addition chains of multi-

plicative terms by applying the rules distributivity-of-*m-over-+m-1,
distributivity-of-*m-over-+m-2, distributivity-of--m-over-+m and
shift--m-inside-*m.

3. Negation can be put in front of multiplicative terms by:
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(defthm extract--m-from-*m

(equal (*m a (-m b k) k) (-m (*m a b k) k)))

4. Negative terms can be lifted up in each addition chain by the second and
third rules generated by the following theorem:
(defthm restricted-associativity-commutativity-of-+m

(and (equal (+m (*m a1 a2 k) (+m (*m b1 b2 k) c k) k)

(+m (*m b1 b2 k) (+m (*m a1 a2 k) c k) k))

(equal (+m (*m a1 a2 k) (+m (-m b k) c k) k)

(+m (-m b k) (+m (*m a1 a2 k) c k) k))

(equal (+m (*m a1 a2 k) (+m b (-m c k) k) k)

(+m (-m c k) (+m (*m a1 a2 k) b k) k))))

5. Each equality appearing in the proof of the equivalence theorem can contain
negative topmost terms in its left side. The following rule moves these terms
from the left side to the right side, thus eliminating negations:
(defthm cancel-leftmost--m-in-equal

(implies (and (matrixp a k) (matrixp b k) (matrixp c k))

(iff (equal (+m (-m a k) b k) c) (equal b (+m a c k)))))

6. The resulting equalities of addition chains of multiplicative terms are free
of negative terms, thus they can be decided by right-rotating the expression
trees with associativity-of-+m, commutativity-of-+m and the �rst rule
of restricted-associativity-commutativity-of-+m.

Let +k , −k, ·k be in�x operators representing +m, -s and *m, respectively.
The rewriting strategy that we have presented is used to prove automatically
that, if aij , bij (i, j ∈ {1, 2}) are matrices of dimension 2k, and

m1 = (a12 −k a22) ·k (b21 +k b22) c11 = ((m1 +k m2)−k m4) +k m6

m2 = (a11 +k a22) ·k (b11 +k b22) c12 = m4 +k m5

m3 = (a11 −k a21) ·k (b11 +k b12) c21 = m6 +k m7

m4 = (a11 +k a12) ·k b22 c22 = ((m2 −k m3) +k m5)−k m7

m5 = a11 ·k (b12 −k b22)
m6 = a22 ·k (b21 −k b11)
m7 = (a21 +k a22) ·k b11

then:

c11 = a11 ·k b11 +k a12 ·k b21

c12 = a11 ·k b12 +k a12 ·k b22

c21 = a21 ·k b11 +k a22 ·k b21

c22 = a21 ·k b12 +k a22 ·k b22 .

Acl2 develops a successful inductive proof of the equivalence theorem once
this helper lemma has been proved. Let p(a, b, k) denote the property stating
that both multiplication functions, *s and *m, produce the same result when
their inputs, a and b, are matrices of dimension 2k. Acl2 inducts according to
a scheme suggested by (*s a b k). If we represent the submatrices of a and b
by aij , bij (i, j ∈ {1, 2}) then the proof sketch is:
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1. Base case: there are two trivial subcases (k /∈ IN ∨ k = 0 and k ∈ IN∗ ∧
k ≤ k0), the proof proceeds by the expansion of the functions involved and
simpli�cation.

2. Inductive step (k ∈ IN∗ ∧ k > k0): the proof is reduced to

p(a12 −k−1 a22, b21 +k−1 b22) ∧ p(a11 +k−1 a22, b11 +k−1 b22) ∧
p(a11 −k−1 a21, b11 +k−1 b12) ∧ p(a11 +k−1 a12, b22 ∧

p(a11, b12 −k−1 b22) ∧ p(a22, b21 −k−1 b11) ∧
p(a21 +k−1 a22, b11) =⇒ p(a, b, k)

and this is proved by the expansion of the multiplication functions and sim-
pli�cation with the helper lemma.

8 Execution Times and Optimal Threshold

It is a known fact that the threshold choice can have a deep impact in the
execution times of Strassen's algorithm (this is usual when working by �divide
and conquer�). Although the value of the threshold does not a�ect the asymptotic
growth rate, which is Θ(nlog2 7), it a�ects the hidden constants in the asymptotic
notation.

In theory, optimal thresholds can be analytically computed, but a theoretical
optimal threshold should only be regarded as an estimate. In real life, there are
many factors that can deviate an optimal threshold from its theoretical location.

We have determined that the empirical optimal threshold for Strassen's al-
gorithm is k0 = 5 in our implementation, as shown in Table 1. Time is measured
in CPU seconds of a particular computer using the most recent version of Acl2
to date.7 Deviation from this optimal threshold has dramatical consequences.

The last column (k0 = ∞) shows the times obtained with the classical algo-
rithm. For example, by using the �tuned� (k0 = 5) version of Strassen's algorithm
more than 32% of the execution time is saved with respect to the classical algo-
rithm when k = 9.

9 Conclusions and Further Work

We have presented here a correctness proof of Strassen's matrix multiplication
algorithm with arbitrary threshold for square matrices whose dimension is a
power of two. This result is by no means trivial and it is testimonial to the high
level of automation that can be reached in Acl2 when a proper formalization is
used.

There are many applications of matrix and polynomial arithmetic ranging
from DSP to computer graphics and CAD. Therefore, we think that it is im-
portant that basic libraries of algorithms and theorems on these structures are

7 An Intel Pentium III 600MHz, 128MB SDRAM 133MHz under ACL2 2.5/GCL 2.3.
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Table 1. In�uence of the threshold in Strassen's algorithm (time in s)

k k0 = 0 1 2 3 4 5 6 7 ∞
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
6 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3
7 3.5 3.1 2.4 2.0 2.0 2.0 2.1 2.3 2.3
8 31.2 29.1 22.7 19.1 17.9 18.0 19.1 20.2 20.4
9 198.5 182.8 143.9 119.3 119.1 114.8 129.3 140.4 170.0

available. In this sense, our work is complementary to [12], where a formaliza-
tion of basic polynomial arithmetic is presented. Both works include arithmetic
operations, ring properties and some useful operational rules.

We think that the representation issues are the key to obtain clear statements
of the properties to be proved. The formalization shown is suitable for operating
with high dimension dense matrices and the degree of automation achieved is
quite acceptable. We had to devise several induction schemes, though we even-
tually realized that four of them could be merged into one scheme. The rewriting
strategy has also played an important role.

Some technical lemmas on basic arithmetic properties of numbers were also
required during the proofs, though it is possible to eliminate them by including
a book on number arithmetic from the standard Acl2 distribution.

All the functions and theorems have been collected in Acl2 books to in-
crease their reusability. As an application, a non-trivial matrix multiplication
algorithm, Strassen's algorithm, has been certi�ed. There are algorithms more
e�cient asymptotically but they are of limited practical interest due to an im-
portant increase of the hidden constants.

It is di�cult to give a precise measure of the development e�ort, but we think
that it is still far away from typical programming e�orts for similar projects.
On the other hand, by using formal certi�cation we can assure correctness in
exchange for this e�ort.

Winograd's algorithm is a variant of Strassen's algorithm that reduces the
number of matrix additions/subtractions from 18 to 15 by a clever bookkeeping
of common subexpressions. Although we have omitted it here, this algorithm
has been certi�ed too: an analogous equivalence theorem has been proved.

Fast matrix exponentiation is one of our goals. Again, �divide and conquer�
provides the necessary algorithmic techniques. A well-known fast exponentiation
algorithm can be obtained by binary reduction. This can be combined with
Strassen's algorithm to obtain a fast matrix exponentiation algorithm.

We are also working in abstracting the set of elements to obtain matrices
over arbitrary (non-commutative) rings. This can be achieved by using the en-
capsulation principle to constrain element operations to the desired properties.
Later, functional instantiation can be used to obtain concrete implementations.
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However, once the set of elements has been abstracted, we cannot use the linear
arithmetic decision procedure in our proofs any more. Thus, linear arithmetic
must be replaced with ad hoc properties.

A rather complex work to be considered would be the obtainment of an
e�cient formalization for arbitrary dimension matrices akin to the formalization
presented here, but this would require a totally di�erent approach.
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