
A PVS Theory of Symbolic Transition Systems

Savi Maharaj

Department of Computing Science and Mathematics
The University of Stirling

Stirling FK9 4LA,
Scotland, UK

savi@cs.stir.ac.uk

Abstract. This paper describes some work carried out in the context
of a project aimed at developing tools for reasoning about the formal de-
scription technique Full LOTOS. One of the tasks within this project was
the development of a theory of symbolic transition systems for Full LO-
TOS, and of a corresponding modal logic. This task was carried out with
the help of the PVS theorem prover, which served as a convenient vehi-
cle for experimenting with alternative definitions of the concepts being
developed. The proof of correctness of the modal logic was also partially
carried out within PVS. Our main conclusion is that the discipline im-
posed by use of the fully formal PVS notation provided valuable help
with the detection and correction of errors and omissions in our experi-
mental definitions, thereby making it easier to arrive at a correct set of
definitions.

1 Introduction

The ISO standard formal description technique, Full LOTOS [1], is a widely-
used formal method. One of the key strengths of LOTOS is that it combines
a process algebra (called Basic LOTOS, and deriving from both CCS[10] and
CSP[8]) with an algebraic specification language, ACT ONE [5] for specifying
the properties of datatypes. This combination makes for a highly expressive
language which has been applied to a broad variety of applications. However,
one of the problems which has hampered the use of LOTOS is a shortage of tools
such as model-checkers to allow analysis of LOTOS specifications.

One reason why tool development has been slow is that the standard seman-
tics of LOTOS very quickly gives rise to infinite data structures, which are not
amenable to analysis by computer. The standard semantics of a LOTOS process
is a structured, labelled, transition system, which is basically a state-transition
graph in which every edge is labelled by an event. These events may consist of
a gate name alone (simple events) or of a gate name together with a data value
(structured events). Infinitely-branching transition systems arise when a LO-
TOS specification contains a structured event involving a variable, where there
are infinite possible values for that variable. For example, the event g? x:nat,
meaning roughly “input any natural number x at gate g”, will give rise to an

256 S. Maharaj

infinitely branching transition system, containing one branch for each possible
value of x.

The solution which we have explored is the development of an alternate se-
mantics, based upon symbolic transition systems (STSs). The basic intuition be-
hind a symbolic transition system is that its transitions may be labelled by data
expressions involving variables, rather than specific data values. Additionally,
each transition is labelled by a boolean expression (possibly involving variables)
representing the conditions under which that transtion is possible. The use of
STSs give rise to much smaller representations for LOTOS processes involving
data.

STSs were introduced by Hennessy and Lin[7] as a means of giving a symbolic
semantics to value-passing CCS. We have adapted this work to suit Full LOTOS.
The details of our symbolic semantics for LOTOS may be found in [4].

This paper describes part of the next stage of our project, in which we develop
a logic for reasoning about STSs. This logic was developed in parallel with a
definition of symbolic bisimulation on STSs. In order to keep track of the many
details of these definitions, and to manage version control as we experimented
with alternative possibilities, we chose to encode the definitions within the PVS
theorem prover [9]. PVS was also used to assist with the proof of a result relating
the equivalence induced by the logic to symbolic bisimulation.

The rest of this paper is structured as follows: Section 2 gives the definition of
a symbolic transition system (STS) and shows how this was represented in PVS.
Section 3 describes the problem of defining syntactic substitution on STSs, and
how this was dealt with. Section 4 gives the definition of the logic of the modal
logic, FULL, that we have developed for Full LOTOS, and describes how this
logic was encoded within PVS. Section 6 briefly describes how the correctness of
the logic was demonstrated, and discusses to what extent this proof was carried
out using PVS. Section 7 concludes.

2 Symbolic Transition Systems

We shall assume that we have a countable set of variables, Var, ranged over
by x, y, etc., and a (possibly infinite) set of values, Val, ranged over by v . We
also assume a set of data expressions, Exp, which includes Var and Val and
is ranged over by E , and a set of boolean expressions, BoolExp, ranged over
by b. We also assume that we have a set of gates, G, ranged over by g . The
set of simple events, SimpleEv, ranged over by a, is defined as G ∪ {i, δ}. (In
LOTOS i represents a silent, internal event and δ is a special event which takes
place when a process is exited.) The set of structured events, StructEv contains
all gate-expression combinations gE , as well as all combinations δE . Since the
two kinds of structured events are handled exactly the same, we have chosen to
ignore δ in this paper, treating it as if it were a member of G. For simplicity,
we do not allow structured events consisting of multiple data expressions; only
singleton data offers are allowed. It is possible, but tedious, to extend our analysis
to the case of multiple data offers.

A PVS Theory of Symbolic Transition Systems 257

Basically, an STS is a directed graph whose nodes are tagged with sets of
free variables, and whose branches are labelled with a boolean condition (the
transition condition) and an event. Formally, the definition of STS is as follows:

Definition 1. (Symbolic Transition Systems) A symbolic transition system con-
sists of:

– a set of states, containing a distinguished initial state, T0, with each state
T tagged with a set of free variables, denoted fv(T).

– a set of transitions written as T b α- T ′,
where α ∈ SimpleEv ∪ StructEv and b is a Boolean expression
and fv(T ′) ⊆ fv(T) ∪ fv(α) and fv(b) ⊆ fv(T) ∪ fv(α) and
#(fv(α)− fv(T)) ≤ 1

Following convention, we shall often identify an STS with its initial state.
For example, the set of free variables of an STS S , fv(S), is defined as the set of
free variables of the initial state of S .

2.1 Representing STSs in PVS

In order to allow simple examples of STSs to be encoded and experimented with,
data values were represented by the concrete type nat, rather than being left as
an abstract parameter. A simple theory of data expressions over natural numbers
with addition was developed. Similarly, a theory of boolean expressions over
natural numbers was developed, to be used for representing transition conditions.
These theories are omitted for the sake of brevity.

States and Gates are represented by type nat, wrapped up in appropriate
constructors using the inductive datatype mechanism. Simple and structured
events are represented in a similar way. These definitions are straightforward,
and are not shown.

A transition is then represented as a record containing the source and desti-
nation states, the transition condition, and the transition event.

An STS is represented by introducing a type of records consisting of an
initial state t0, a set of states, a function associating a set of free variables with
each state, and a set of transitions. These records are then constrained by a
number of predicates representing the various conditions on free variables shown
in Definition 2.

3 Handling Substitution

In defining many of the concepts needed for this work, it was necessary to decide
how to handle the situation where a value is substituted for one of the free
variables of an STS. It turns out that naive, syntactic substitution of the value
gives rise to incorrect results. This is illustrated in Figure 2. The STS shown
diagrammatically on the left represents a simple, one element buffer, and has
a single free variable x. Suppose that the first action taken by this buffer is to

258 S. Maharaj

Transition : TYPE = [# source : State,

condition : BoolExp,

event : Event,

dest : State

#]

pre_STS : TYPE = [# t0 : State,

states : setof[State],

freevars : [(states) -> setof[Variable]],

transitions : setof[Transition] #]

Property1 % ...start state belongs to the set of states

Property2 % ...a transition may introduce at most one new variable

Property3 %

Property4 % Properties 3-6 encode the restrictions on free

Property5 % variables given in Definition 1.

Property6 %

STS : TYPE = ({x:pre_STS | Property1(x) AND Property2(x) AND

Property3(x) AND Property4(x) AND

Property5(x) AND Property6(x)})

Fig. 1. PVS representation of Symbolic Transition Systems

A PVS Theory of Symbolic Transition Systems 259

input the value 3. If we perform a simple syntactic substitution of 3 for x, we
obtain the STS on the right, which represents a buffer that can output the value
3, and is thereafter incapable of inputting any value other than 3. This is clearly
incorrect.

The problem with defining substitution on STSs was mentioned briefly in [7],
but without a full explanation of the source of the problem. As a result, in the
initial, on-paper versions of our work, we assumed that syntactic substitution
on STSs was possible, and glossed over the details of how it was carried out.
When the work was translated to PVS, however, it became necessary to have
a full, formal definition of substitution, and it became apparent that syntactic
substitution was not possible in the presence of STSs with cycles (such as the
example of Figure 2).

In our view, one of the major benefits of using PVS for this work has been
the discipline enforced by the need for full, formal definition, which forces the
user to closely scrutinize ideas or assumptions that might otherwise have been
left unexamined. In our case, it turned out that a correct understanding of
substitution on STSs was vital towards obtaining a correct set of definitions for
the modal logic we were trying to develop.

How, then, should substitution be handled? In [7], the problem is solved by
introducing the concept of a “term”, which consists of an STS paired with a
substitution. The idea is that the substitution is carried around together with
the STS, and applied only at points when it is meaningful to do so (for example,
when a boolean condition is to be evaluated). This solution can successfully be
adapted for LOTOS, and, indeed, is the approach that was taken in the final
version of this work [2], which was carried out on paper only.

At present, the PVS version of this work utilises a different, stop-gap solution:
we simply assume that the STS contains no loops. The reason for this is simply
that at the point when it was realized that “terms” were necessary, we found
that we could make faster progress by working on paper rather than making the
effort required to encode all our definitions in PVS. Essentially, at that point,
it seemed that most of the benefits to be reaped from the use of the tool had
been realized, and any further effort would be met with diminishing returns.
This issue will be discussed further in Section 6.

The work presented in the rest of this paper reflects the developments actually
carried out in PVS, and does not use the concept of “terms”. Therefore, the logic
and the bisimulation relation shown in Sections 4 and 6 are defined on STSs
without cycles. It is is straightforward to adapt these definitions to use “terms”,
and the resulting definitions may be seen in [2] and [3]. In future work, we intend
to encode these definitions of within PVS in order to have a complete theory of
STSs in PVS.

4 A Modal Logic

The modal logic which we have developed for LOTOS is based on Hennessy and
Lin’s extension of Hennessy-Milner logic to value-passing CCS [6]. The details

260 S. Maharaj

Buff

Buff’

true

input x

output x

true

Buff

Buff’

true

true

output 3

input 3

Fig. 2. Failed substitution on Buff (initial state is circled)

of the logic are explained in full, with illustrative examples, in [3]. We do not
repeat those details here, but instead give a brief summary of the logic.

Syntactically, the logic consists of a basic Hennessy-Milner style logic, ex-
tended with four new modalities for expressing properties related to transitions
with data. The new modalities are obtained by combining [] and 〈 〉 in every
possible way with the existential and universal quantifiers for dealing with data.
The syntax of the result is shown in Definition 4, where Φ represents formulae
to be used to express properties of closed STSs. The logic is defined over an
underlying theory of boolean expressions over data values.

Definition 2. (Syntax of FULL)

Φ ::= bool | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ
| 〈∃x g〉Φ | 〈∀x g〉Φ | [∃x g]Φ | [∀x g]Φ

The semantics of the logic is given as a relation between STSs and formulae,
written T |= Φ. A version of this semantics, using “terms” rather than STSs, is
presented in [3] and the meaning of the new modalities in the logic is fully ex-
plained. As an example, here we give the semantics of one of the new modalities,
“exists-diamond” which combines 〈 〉 with ∃.

A closed STS, T , satisfies the formula 〈∃x g〉Φ, provided that there is some
value v such that one of the following hold:

– there is a transition T tt gv- T ′ and T ′ |= Φ[v/x]
– there is a transition T b gz- T ′, where z is a new variable bound by the

transition event, and b[v/z] ≡ tt and T ′[v/z] |= Φ[v/x]

The syntax of the logic is encoded in PVS as an inductive type, Form.
The PVS mechanism for defining recursive functions then provides a convenient
method for encoding the semantics of the logic, as well as auxiliary functions
such as substitution on formulae. A fragment of the definition of the semantics
is shown in Figure 4. Here, t ranges over STSs, f over formulae, and enjoys?
represents the |= relation.

A PVS Theory of Symbolic Transition Systems 261

enjoys?(t,f) : RECURSIVE bool =

CASES f OF

bool_f (be) : valid? (be),

and_f(f1,f2) : enjoys?(t,f1) AND enjoys?(t,f2),

or_f(f1,f2) : enjoys?(t,f1) OR enjoys?(t,f2),

% ... box, diamond cases not shown

existsDiamond_f(g,x,f1) :

EXISTS (v:Value):

(EXISTS (tr:(structInitTransOnGate(t,g))) :

IF (boundvars(t,tr) = emptyset) % tr doesn’t bind a variable

THEN

(valid? (equalExp(value(v),data_offer(tr))) AND

valid? (condition(tr)) AND

enjoys?(post(t,tr), subF(x,v,f1)))

ELSE

EXISTS (y:Variable) : (member(y,boundvars(t,tr)) AND

valid? (subB(y,value(v),condition(tr))) AND

enjoys?(subSTS(y,v,(post(t,tr))),subF(x,v,f1)))

ENDIF),

% ... remaining 3 data modalities not shown

ENDCASES

MEASURE depth(f)

--

Fig. 3. The semantics of the logic in PVS

262 S. Maharaj

5 Symbolic Bisimulation

An important aim in the design of the logic was that it should correspond to a
natural notion of bisimulation on STSs, in the sense that bisimilar STSs should
satisfy exactly the same logical formulae. We say that sugh a logic is adequate
with respect to the relevant bisimulation. The variant of bisimulation used in
this paper is symbolic bisimulation, which is based upon the definition of early
symbolic bisimulation for value passing CCS introduced in [7].

Symbolic bisimulation is a complicated concept, particularly in the case of
LOTOS where there are multiple ways in which the transitions of one STS may
be matched by those of another. (For example, a transition which binds a new
variable may be matched either by a corresponding variable-binding transition,
or by a non variable-binding transition with an appropriate data offer. This is
different from CCS where a ? transition may be matched only with a ? tran-
sition, and ! only with !.) We shall only give a brief explanation of symbolic
bisimulation here, but refer the reader to [4] for more detail.

Definition 3 gives the full definition of symbolic bisimulation on STSs. It
takes as a parameter a boolean expression over the free variables of the two
STSs being checked. This boolean expression represents the context, or condition
under which two STS, T and U are bisimilar. The intuition behind the definition
is that whenever one STS, say T , can perform a transition, leading to some state
T ′, it is possible to find a finite set of boolean expressions, B which partition the
context under which that transition can be performed. Then, for each partition
within this set, the STS T must be able to perform an appropriate transition,
leading to a state T ′ which is bisimilar to S ′ under the appropriate boolean
condition.

Definition 3. Layered symbolic bisimulation on STSs
Given two STSs T and U and a boolean expression b,

1. T ∼b
0 U

2. for all k > 0, t ∼b
k u provided that:

(a) (simple event)
if T has a transition T bT a- T ′, then there is a finite set of booleans
B over fv(T) such that b ∧ bT ⇒ ∨

B and for each b′ ∈ B, there is a
transition U bU a- U ′ such that b′ ⇒ bU and T ′ ∼b′

k−1 U ′

(b) (structured event, no new variable)
if T has a transition T bT gET- T ′ where fv(ET) ⊆ fv(T), then there is
a finite set of booleans B over fv(T) ∪ {z} such that
b ∧ bT ∧ z = Et ⇒

∨
B (where z is a new variable),

and for each b′ ∈ B either
there is a transition U bU gEU- U ′ where fv(EU) ⊆ fv(U) and
b′ ⇒ bU and b′ ⇒ ET = EU and T ′ ∼b′

k−1 U ′

or
there is a transition U bU gy- U ′ such that b′ ⇒ bU [z/y] and
T ′ ∼b′

k−1 U ′[z/y]

A PVS Theory of Symbolic Transition Systems 263

(c) (structured event, new variable)
whenever T has a transition T bT gx- T ′ , then there is a finite set
of booleans B over fv(T) ∪ {z} (where z is a new variable) such that
b ∧ bT [z/x] ⇒ ∨

B, and for each b′ ∈ B either
there is a transition U bU gEU- U ′ where fv(EU) ⊆ fv(U) and
b′ ⇒ bU and b′ ⇒ z = EU and T ′[z/x] ∼b′

k−1 U ′

or there is a transition U bU gy- U ′ such that b′ ⇒ bU [z/y] and
T ′[z/x] ∼b′

k−1 U ′[z/y]
(d), (e), (f) Symmetrically, the transitions of U must be matched by T.

We have proved, partially on paper, and partially within PVS, that the
logic FULL is adequate with respect to symbolic bisimulation on STSs (without
loops). The PVS aspect of this proof is discussed in Section 6. In our later work
[2, 3], in which we used “terms” rather than STSs, we found it more convenient
to prove adequacy with respect to a less complex definition of bisimulation. This
proof was carried out on paper, but was heavily influenced by the insights gained
in doing the PVS assisted proof relating to symbolic bisimulation.

The PVS encoding of the definition of symbolic bisimulation is technically
straightforward but lengthy. A fragment, showing just one (rule 2(b)) of the six
rules that make up the definition, is shown in Figure 4.

The encoding uses several preliminary definition which were found conve-
nient, and whose details are not shown. For example, given an STS T, the function
structInitTransitions applied to T returns the set of all structured transitions
(that is, those involving a data offer) available from the initial state of T. There
are also some auxiliary functions, such as gateOf and dataOf, for extracting
various components from a transition, and functions for carrying out syntactic
substitution (for example, subB, applySubstSTS_aux.)

6 Proving Adequacy

To prove the adequacy of the logic with respect to symbolic bisimulation, we
must show that the equivalence upon STSs induced by the logic corresponds to
symbolic bisimulation (for closed STSs). There are two directions to be proved.
First, we showed (Proposition 1) that if two closed STSs are bisimilar, then they
satisfy exactly the same logical formulae. This proof was done partially within
PVS. Second, we showed the converse (Proposition 3), namely, that if two closed
STSs are not bisimilar, then they can be distinguished by some logical formula.
This proof was done entirely on paper, and is not discussed here.

For both theorems, it was useful to define the depth of a formula. This is a
simple, syntactic depth, derived from the grammar of Definition 2.

Proposition 1. For all n, for all closed STSs T and U , if T ∼true
n U then, for

all formulae Φ such that depth(Φ) ≤ n, T |= Φ if and only if U |= Φ.

Proposition 1 was proved by first proving a more general result about open
STSs, Proposition 2.

264 S. Maharaj

bisim_n(b,T,U,n) : RECURSIVE bool =

IF n = 0 THEN true % at layer 0 all STSs are bisimilar

ELSE

% ...rules for dataless transitions omitted...

% the structured transitions of T must be simulated by U:

(FORALL (tT : (structInitTransitions(T))) :

EXISTS (z:({x:Variable|NOT(member(x,union(vars(T),vars(U))))})) :

EXISTS (Bs:list[(BoolExpOverVars(union(freevars(T),singleton(z))))]) :

IF boundvars(T,tT) = emptyset % T transition does not bind a variable

THEN

imply? (andalso(andalso(b,condition(tT)),

equalExp(variable(z),

dataOf(structuredEv(event(tT))))),

disjoin(Bs))

AND

(FORALL (b1:({x:BoolExp | member(x,Bs)})) :

EXISTS (tU:(structInitTransitions(U))) :

(gateOf(structuredEv(event(tU))) =

gateOf(structuredEv(event(tU))))

AND

IF % U transition does not bind a variable

boundvars(U,tU) = emptyset

THEN

imply? (b1,

andalso(condition(tU),

equalExp(dataOf(structuredEv(event(tT))),

dataOf(structuredEv(event(tU))))))

AND

bisim_n(b1,post(T,tT),post(U,tU),n-1)

ELSE % U transition binds new variable

imply?(b1,subB(boundvar(U,tU),variable(z),condition(tU)))

AND

bisim_n(b1,post(T,tT),

applySubstSTS_aux(boundvar(U,tU),z)

(post(U,tU)),

n-1)

ENDIF)

ELSE % T transition binds new variable - details omitted

ENDIF)

% ...symmetrical rules omitted...

ENDIF

MEASURE n

Fig. 4. PVS encoding of symbolic bisimulation

A PVS Theory of Symbolic Transition Systems 265

Proposition 2. For all n, for all boolean expressions b, for all STSs T and U ,
if T ∼b

n U then, for all formulae Φ such that depth(Φ) ≤ n, for all substitutions
σ such that Tσ and Uσ are both closed, if bσ ≡ true then Tσ |= Φ if and only
if Uσ |= Φ.

The proof of Proposition 2 was carried out almost entirely in PVS. The proof
is basically by induction on n. The n = 0 case is straightforward. For the n > 0
case, there is a further induction on the structure of the formula Φ. As there are
9 constructors for formulae (Definition 2), 2 cases to consider in the semantics
of those formulae that involve data, and a multitude of rules in the definition of
bisimulation, the proof results in the generation of a large number of subgoals.
PVS was invaluable for keeping track of all the subgoals and ensuring that none
was missed.

The cases of formulae not involving data (ie, booleans, conjunction, disjunc-
tion, simple box and diamond) were relatively straightforward to prove. The
other cases, concerning the new modalities for data, were more complex, involv-
ing close attention to details such as the free variable conditions on boolean
expressions and STSs.

A recurring irritation in doing the proof in PVS was the need to prove trivial-
seeming subgoals regarding the effect of substitution upon such properties as the
depth of formulae. Many of these subgoals were postponed, and have not been
formally proved at the date of writing, so it is for this reason that we say that the
proof was only partially carried out with PVS. The mechanism for postponing
subgoals is useful, but it can be confusing to the user when a postponed subgoal
unexpectedly reappears after, say, a succession of other subgoals have quickly
been proved. It can be difficult to keep track of one’s place within the proof. We
suggest that this problem might be alleviated by allowing postponed subgoals
to be named and thereafter hidden from the user until explicitly asked for.

It has been suggested to us that many of the problems caused by the explicit
handling of substitution might have been avoided by the use of higher-order
syntax techniques. We have not yet explored this option.

For completeness, Propostion 3 the other half of the adequacy result. This
has been proved entirely on paper. The proof of a similar result, relating to
”terms” rather than STSs, is outlined in [2].

Proposition 3. For all n, for all closed terms T and U , if T∼/true
n U then there

is a formula Φ such that T |= Φ and |=/Φ

7 Conclusion

Our main aim in using PVS for this work was to have computer assistance with
keeping track of all the details in our definitions, especially at times when several
versions of, for example, the semantics of the logic FULL, were under consid-
eration. Another main aim was to have computer assistance with the adequacy
proof, especially with keeping track of all the inductive cases and sub-cases that
arose.

266 S. Maharaj

After carrying out the work, we judged that the first of these aims had been
justified. Having multiple versions stored on the computer as PVS files, rather
than written out on paper made it much easier to compare versions, perform
edits, and generally keep track of detail. Our only complaint, regarding this aim,
was that PVS would issue warnings when there were multiple versions of a theory
with the same name.

Regarding the second aim, our verdict is somewhat mixed. PVS does indeed
keep track of all the subgoals in a proof, ensuring that no subgoal is inadvertently
missed out. However, there were so many subgoals generated in the PVS proof
that it was easy to lose sight of the high level proof structure. We found that
substantial effort was needed, requiring annotations on paper, in order to keep
track of the thread of the proof.

The most surprising result of the exercise, however, was the great benefit
we gained from the process of formalizing our definitions. By forcing us to be
fully explicit about what we meant by, for example, substitution on STSs, the
formalization process revealed to us some inherent problems in our assumptions,
and led us towards a realization of the correct definitions. We believe that this
was the greatest benefit derived from using PVS for this work.

References

1. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS. In P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors, The for-
mal Description Technique LOTOS, Elsevier Science Publishers B.V. (North-
Holland), 1989.

2. M. Calder, S. Maharaj and C. Shankland. An Adequate Logic for Full LOTOS.
In Proceedings of Formal Method Europe 2001, Springer LNCS 2021, March
2001.

3. M. Calder, S. Maharaj and C. Shankland. A Modal Logic for Full LOTOS
based on Symbolic Transition Systems. To appear in The Computer Journal.

4. M. Calder and C. Shankland. A Symbolic Semantics and Bisimulation for Full
LOTOS. Technical Report CSM-159, Department of Computing Science and
Mathematics, the University of Stirling. October 2000.

5. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.

6. M. Hennessy and X. Liu. A Modal Logic for Message Passing Processes. In
Acta Informatica 32 (1995) 375-393.

7. M. Hennessy and H. Lin. Symbolic bisimulations. In Theoretical Computer
Science 138 (1995) 353-389.

8. C.A.R. Hoare. Communicating Sequential Processes, Prentice-Hall Interna-
tional, 1985.

9. S. Owre, J.M. Rushby and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), Saratogo, NY, June 1992. Springer-Verlag LNCS no. 607.

10. R. Milner. Communication and Concurrency, Prentice-Hall (1989).

