
Formal Verification of a Theory of IEEE Rounding

Christian Jacobi

Saarland University, Computer Science Department
66123 Saarbr¨ucken, Germany

cj@cs.uni-sb.de
Tel +49-681-302-4129, Fax -4290

August 8, 2001

Abstract. We report on the formal verification of a theory of IEEE rounding
in the theorem prover PVS. The theory consists of a formalization of the IEEE
standard, and notations and theorems facilitating the verification of floating point
hardware. In particular, the concepts ofα-equivalence and round decomposition
are formalized, allowing for a subdivision of floating point units into smaller
building blocks, which then can be verified separately. The theory has been suc-
cessfully applied to the verification of a fully IEEE compliant floating point unit.

1 Introduction

In [6, 15], a theory of IEEE rounding was presented. This theory is used in [15] to
prove the correctness of a floating point unit (FPU). This paper describes the formal
verification of this theory of rounding in the theorem prover PVS [17]. The verified
theory has been successfully used to formally verify the complete FPU [3].

The theory consists of a formalization of the IEEE standard 754 [11], and notations
and theorems facilitating the verification of floating point hardware. Since the design
of floating point units is an error prone process and the correctness of the floating point
hardware strongly depends on the correctness of the rounding theory, we have formally
verified this rounding theory.

The major concepts of the theory arefactorings, α-equivalence, andround decom-
position. Factoringsare an abstraction of IEEE floating point numbers, which allows
talking about numbers instead of their bitvector encodings. This enables concise state-
ments without having to deal with the actual IEEE formats and special cases (e.g.,±∞
and NaN).

The concept ofα-equivalencepartitions the real numbers into equivalence classes
such that equivalent numbers are rounded to the same floating point number. This en-
ables the decomposition of the FPU into computational units (e.g., adder and multi-
plier), and a rounding unit. The computational unit delivers a result to the rounder that
needs not to be the exact result of the operation but an equivalent result. The rounder
therefrom computes the rounded floating point number and the exceptions. The excep-
tion computation is a central part of the rounding unit.

The process of rounding a real number to the appropriate representable floating
point number is split into three simple steps by means ofround decomposition. This
enables a similar decomposition of the rounding hardware into three smaller modules.

240 C. Jacobi

Furthermore, round decomposition is a useful tool for proving properties of the round-
ing function.

The verification of complex hardware systems such as FPUs depends on a sub-
division of the system into smaller parts, which then are verified separately. In this
sense,α-equivalence and round decomposition ease the problem of floating point hard-
ware verification. This has been successfully applied in a project at Saarland University,
where we formally verified a fully IEEE compliant floating point unit [3].

Project Status. The verification of the theory of rounding is part of a larger project
aiming to formally verify the VAMP microprocessor. The VAMP microprocessor is a
variant of the DLX [9, 15], a RISC processor based on the MIPS instruction set. The
VAMP features an out-of-order Tomasulo scheduler, delayed branch, precise and nested
interrupts, cache memory, and a fully IEEE compliant FPU.

We have verified a library of basic circuits, upon which more complex circuits are
built [4]. The verification of the Tomasulo CPU core is finished [12]. The verification of
the cache has just begun. The verification of the floating point theory and hardware is
complete. The floating point unit supports both single and double precision. Denormal
numbers are handled in hardware. Exceptions are computed as mandated by the stan-
dard. The supported operations are addition, subtraction, multiplication, division (by
Newton-Raphson iteration), comparisons, and conversion between the floating point
formats and between floating point numbers and integers [3].

The complete hardware of the VAMP processor is described on the gate level in
PVS. We have developed a translation tool to automatically convert the PVS hardware
description to Verilog HDL. The verified VAMP processor will be implemented on a
Xilinx FPGA. We have already converted the complete multiplication/division-FPU to
Verilog and have implemented it on the FPGA.

Related Work. As mentioned above, the central concepts in this paper are taken
from [6, 15]. The paper-and-pencil proofs in [6, 15] served as guidelines in our for-
mal verification. The significance of the proofs in this paper is that they are formally
verified; they are excerpts of the actual PVS proofs.1 Some proofs in [6, 15] had bugs,
and most proofs had gaps which had to be filled for the formal verification.

Miner has previously formalized the IEEE standard in PVS [13]. Our definition of
the rounding function is based on this work, since the definition in [6, 15] is informal.
Miner’s formalization does not comprise theorems related to ourα-equivalence and
round decomposition theorems.

Another formalization of the IEEE standard was given by Harrison [8] in the theo-
rem prover HOL Light. Harrison does not discuss exponent wrapping, which introduces
some ambiguities in the definition of the inexact exception (cf. Sect. 4). Harrison’s for-
malization has no counterpart to round decomposition. He has theorems related to the
computation of exceptions ofα-equivalent numbers [8, Sect. 5.3], but does not relate
them to sticky-bit computations. However, this is essential to subdivide the FPU into
computational units and a rounder unit in our verification project.

1 The PVS files are available at http://www-wjp.cs.uni-sb.de/projects/verification/

Formal Verification of a Theory of IEEE Rounding 241

Barrett has specified parts of the IEEE standard in Z [2]. In [14], Moore et al. verify
the AMD K5 floating point division algorithm. They have a definition of sticky bit
computations, which is similar to ourα-equivalence. They do not describe exceptions
and round decomposition. In [18–20], Russinoff proves the correctness of the AMD K5
square root, and the AMD Athlon square root, division, and addition algorithms. His
formalization of the rounding function and sticky bit computations is similar to [14].
Russinoff does not cover denormals, exceptions, and round decomposition; however,
he states that he handles denormals in unpublished work (private communication).

There are other verification projects for floating point hardware, e.g., [1, 5, 16]. All
these projects use less intuitive formalizations of IEEE rounding. They do not cover
denormals and exceptions.

2 Factorings

2.1 Basic Definitions

We abstract IEEE numbers as defined in the standard tofactorings. A factoring is a
triple (s, e, f) with sign bits ∈ {0, 1}, exponente ∈ Z, and significandf ∈ R≥0 . Note
that exponent range and significand precision are unbounded. The value of a factoring
is

[[s, e, f]] := (−1)s · 2e · f.

The standard introduces an exponent widthN , from which constantsemin :=
−2N−1 + 2 andemax := 2N−1 − 1 are derived. These constants are used to bound
the exponent range.

We call a factoring(s, e, f) normal if e ≥ emin and1 ≤ f < 2. A factoring is
calleddenormalif e = emin and0 ≤ f < 1. We call a factoring anIEEE factoringif it
is either normal or denormal.

Lemma 1. A factoring (s,e,f) has zero value, ifff = 0.2

The next lemma states that nonzero IEEE factorings are unique:

Lemma 2. Let(s, e, f) and(s′, e′, f ′) be IEEE-factorings with nonzero value. It holds

[[s, e, f]] = [[s′, e′, f ′]] ⇐⇒ (s, e, f) = (s′, e′, f ′).

Zero has two IEEE factorings(0, emin, 0) and(1, emin, 0), called+0 and−0, respec-
tively.

2.2 IEEE Factorings

Next, we define the normalization algorithm. We start by defining a function\norm,
which maps nonzero factorings to factorings with significand between 1 and 2:

\norm(s, e, f) := (s, e + blog2 fc , f · 2−blog2 fc).

2 We omit the proofs of trivial lemmas.

242 C. Jacobi

We proceed with the definition of the functionnorm, which maps any (possibly zero)
factoring to an IEEE-factoring. Let(ŝ, ê, f̂) :=\norm(s, e, f):

norm(s, e, f) :=

(ŝ, ê, f̂) if f 6= 0 andê ≥ emin,
(ŝ, emin, f̂ · 2ê−emin) if f 6= 0 andê < emin,
(s, emin, 0) if f = 0.

The following lemma summarizes the most important properties of the normalization
functions:

Lemma 3. Let (s, e, f) be an arbitrary factoring. It holds:3

1. [[\norm(s, e, f)]] = [[s, e, f]], if f 6= 0,
2. 1 ≤\normf (s, e, f) < 2, if f 6= 0,
3. [[norm(s, e, f)]] = [[s, e, f]],
4. norm(s, e, f) is an IEEE-factoring.

Having defined the normalization algorithm, we define conversion functionsη and η̂,
which assign factorings to realsx:

η̂(x) :=\norm(sign(x), 0, |x|) for x 6= 0,

η(x) := norm(sign(x), 0, |x|) for arbitraryx,

wheresign(x) = 0 if x ≥ 0, andsign(x) = 1 otherwise.4

Lemma 4. Letx ∈ R. It holds:

1. x = [[η̂(x)]] if x 6= 0,
2. x = [[η(x)]]

Lemma 5. Letx ∈ R with x 6= 0 in the context of̂η. It holds:

η̂e(x) = blog2 |x|c ηe(x) =

{
blog2 |x|c if x 6= 0 and blog2 |x|c ≥ emin,

emin otherwise.

η̂f (x) = |x| · 2−η̂e(x) ηf (x) = |x| · 2−ηe(x)

Lemmas 3 to 5 are proved by definition unfolding.

Lemma 6. Let (s, e, f) be an arbitrary factoring with nonzero valuex := [[s, e, f]]. It
holds

1. |x| ≥ 2emin =⇒ η(x) = η̂(x), i.e.,η andη̂ coincide for normal numbers.
2. If 1 ≤ f < 2, it holds(s, e, f) = η̂([[s, e, f]]).
3. If (s, e, f) is an IEEE-factoring, it holds(s, e, f) = η([[s, e, f]]).

Statements 1 and 2 are simple consequences of lemma 5. Statement 3 is proved by using
lemma 2 with(s′, e′, f ′) = η([[s, e, f]]).

3\normf (s, e, f) denotes thef -component of\norm(s, e, f); analogous for other functions and
components.

4 We distinguish+0 and−0 in our theory of factorings, but for the conversion from reals to
factorings we convert0 ∈ R to +0.

Formal Verification of a Theory of IEEE Rounding 243

2.3 Representable Factorings

Let P be the significand precision as defined in the standard. A significandf is called
representable, if f has at mostP−1 digits behind the binary point, i.e., if2P−1·f ∈ N0 .
We call an IEEE-factoring(s, e, f) semi-representable, if f is representable. We call an
IEEE-factoringrepresentable, if it is semi-representable, and furthermoree ≤ emax

holds. We call a realx (semi-)representable, ifη(x) is (semi-) representable.
Representable numbers exactly correspond to the representable numbers as defined

in the standard. Common values for(N, P) are(8, 24) and(11, 53), called single and
double precision, respectively. However, the theory described here is not limited to these
values ofN andP . We only assumeN > 2 andP > 1. The standard defines an
encoding of single and double precision IEEE factorings into bit strings of length 32
and 64, respectively. The idea behind factorings is to leave the bitvector level and argue
about the more abstract factorings. This speeds up the verification of hardware.

The following lemma bounds (semi-)representable numbers.

Lemma 7. Let (s, e, f) be a semi-representable factoring, andi > e be an integer. It
holds

1. f ≤ 2− 21−P ,
2. |[[s, e, f]]| ≤ 2i − 2i−P ,
3. Xmax := 2emax · (2− 21−P) is the largest representable number.

The following lemma characterizes the distance between distinct semi-represent-
able factorings:

Lemma 8. Let (s, e, f) and (s′, e′, f ′) be semi-representable factorings with values
x := [[s, e, f]] andx′ := [[s′, e′, f ′]], let x 6= x′, andi be an integer. It holds

e ≥ i ande′ ≥ i =⇒ |x− x′| ≥ 2i−(P−1).

3 Rounding

Since (semi-)representable numbers are not closed under arithmetic operations (e.g.,
addition, division), the IEEE-standards defines four rounding modes: round to near-
est, round up, round down, and round to zero. In this section, we define the rounding
function, which maps arbitrary reals to semi-representable factorings according to the
standard. The definition is similar to Miner’s definition [13]; it only differs in cases of
overflow and underflow (Sect. 4).

3.1 Definition

We start with the definition of a functionrint(· ,M) for each rounding modeM ∈
{near, up, down, zero}, which rounds realsx to integers:

rint(x, up) := dxe rint(x, near) :=

bxc if x− bxc < dxe − x,
dxe if x− bxc > dxe − x,
x if bxc = dxe ,
2 bdxe /2c otherwise.

rint(x, down) := bxc rint(x, zero) := (−1)sign(x) · b|x|c

244 C. Jacobi

By scaling by2P−1, reals are rounded to rationals withP − 1 fractional bits:

rrat(x,M) := 2−(P−1) · rint(x · 2P−1,M).

Further scaling with2e, e := ηe(x), yields the IEEE rounding function:

rd(x,M) := 2e · rrat(x · 2−e,M).

It is not obvious that this definition conforms with the IEEE standard. In section 3.3 we
prove a theorem to convince the reader of the conformance.

3.2 Decomposition Theorem

The decomposition theorem we prove in this section decomposes the computation of the
rounding function into three steps:η-computation (sometimes called pre-normalization
in the literature), significand rounding, and a post-normalization. The benefit of having
the decomposition theorem is that it simplifies the design and verification of rounder
implementations. Furthermore, it is a powerful tool in other proofs, e.g., in theorem 7.

Theη-computation step computes the IEEE factoringη(x), wherex is the number
to be rounded. The significand round step then rounds the significand computed in the
η-computation toP−1 digits behind the binary point. This is formalized in the function
sigrd:

sigrd(X,M) :=
∣∣rrat

(
(−1)s · f,M)∣∣ ,

whereX = (s, e, f) is an IEEE factoring, andM is a rounding mode. The following
lemma states some properties of thesigrd function:

Lemma 9.

1. sigrd(X,M) = |rd([[X]],M)| · 2−e,
2. 0 ≤ sigrd(X,M) ≤ 2,
3. 1 ≤ f =⇒ 1 ≤ sigrd(X,M),
4. sigrd(X,M) · 2P−1 is an integer.

Part 1 follows by expanding the definitions ofsigrd and rd. For parts 2 and 3 one
expands the definition down torint and applies basic properties of the floor and ceiling
functions. Part 4 is a direct consequence of the definition ofrrat.

In the case that the significand round returns 0 or 2, the factoring has to be post-
normalized; if the significand round returns 0, the sign bit is forced to0 in order to
yield η(0). In case the significand round returns 2, the exponent is incremented, and the
significand is forced to 1:

postnorm(X,M) =

(s, e, sigrd(X,M)) if 0 < sigrd(X,M) < 2,
(s, e + 1, 1) if sigrd(X,M) = 2,
(0, emin, 0) if sigrd(X,M) = 0.

Theorem 1. The resultpostnorm(X,M) of the post-normalization is a semi-repre-
sentable IEEE-factoring.

Formal Verification of a Theory of IEEE Rounding 245

Proof. The casesigrd(X,M) ∈ {0, 2} is trivial. Assume0 < sigrd(X,M) < 1.
By lemma 9.3 we knowf < 1, and hencee = emin sinceX is an IEEE-factoring.
Thereforepostnorm(X,M) is an IEEE-factoring, and with lemma 9.4 it is a semi-
representable factoring.

Now assume1 ≤ sigrd(X,M) < 2. Since the inputX is an IEEE-factoring, we
know e ≥ emin, and hence(s, e, sigrd(X,M)) = postnorm(X,M) is an IEEE-
factoring; semi-representability now follows from lemma 9.4. ut
Lemma 10. [[postnorm(X,M)]] = rd([[X]],M).

Proof. Apply lemma 9.1 and expand definitions. ut
Theorem 2 (Decomposition Theorem).For any real x, and rounding modeM ∈
{near, up, down, zero}, it holds

postnorm
(
η(x),M)

= η
(
rd(x,M)

)
.

Proof. For nonzero rounding results, the claim follows from lemmas 6.3 and 10. Oth-
erwise, the claim follows from the definitions ofnorm, η, andpostnorm. ut

The IEEE factoring of the rounding result can therefore be computed by first com-
puting the IEEE factoring ofx, then rounding the significand, and finally post-normal-
izing the result. This decomposition of the rounding function is well known, but has
been proved explicitly for the first time in [15]. The IEEE formalizations by Miner [13]
and Harrison [8] do not feature a counterpart of round decomposition.

The decomposition theorem has proved to be of great value in the verification of the
VAMP rounding hardware [3]. We have verified the individual hardware components
for η-computation, significand rounding, and post-normalization, and have concluded
the correctness of the rounding hardware by means of the decomposition theorem. We
believe that the verification of the rounding hardware without the concept of decompo-
sition would have been far more complicated.

3.3 Correctness of the Rounding Function

We now demonstrate that the definition of the IEEE rounding functionrd conforms
with the IEEE standard. The specification of the round to nearest mode in the IEEE
standard is as follows:

. . . In this mode the representable value nearest to the infinitely precise result
[of any floating point operation] shall be delivered; if the two nearest repre-
sentable values are equally near, the one with its least significant bit zero shall
be delivered.. . .

Since our formal definition of the functionrd does not obviously coincide with this
informal definition, the following theorem is proved. This theorem hopefully convinces
the reader of the conformance of our rounding definition.

Theorem 3. Letx, x′ ∈ R andx′ be a semi-representable number.

246 C. Jacobi

1. For any rounding modeM, rd(x,M) is semi-representable.
2. rd(x, near) is anearestsemi-representable number:|x− x′| ≥ |x− rd(x, near)|.
3. If there aretwo nearest numbers, then the one with least significant bit zero is cho-

sen:x′ 6= rd(x, near) and|x−x′| = |x−rd(x, near)| implies
(
ηf (rd(x, near)) ·

2P−1
)

is even.

Similar theorems exist for the three remaining rounding modes.

Proof. Part 1 is a trivial consequence of theorems 1 and 2. Part 2 and 3 rely on the
following fact proved by Miner in PVS [13]:

|x− rint(x, near)| ≤ 1
2 and

|x− rint(x, near)| = 1
2 =⇒ rint(x, near) is even.

Let (s, e, f) := η(x) and(s′, e′, f ′) = η(x′). It is easy to adopt the above fact to the
rd-function:

|x− rd(x, near)| ≤ 2e−P and (1)

|x− rd(x, near)| = 2e−P =⇒ (
rd(x, near) · 2−(1+e−P)

)
is even.

We now prove part 2. We may assume thatx′ 6= rd(x, near), since otherwise the claim
is trivial. From the decomposition theorem and the definition of the post-normalization
we know thatηe(rd(x, near)) ≥ e. Now assumee′ ≥ e. Using lemma 8 (where we set
(s′, e′, f ′) = η(rd(x, near)) andi = e) results in

|rd(x, near) − x′| ≥ 2e−(P−1) = 2 · 2e−P . (2)

Using the triangle inequality, (1), and (2) together yield

|x− x′| ≥ 2e−P . (3)

Equations (1) and (3) yield part 2. Assume otherwise thate′ < e. Sinceemin ≤ e′

we haveemin < e, and thereforef ≥ 1, since(s, e, f) is an IEEE factoring. Hence
|x| ≥ 2e. Lemma 7.2 withi = e gives|x′| ≤ 2e − 2e−P . Together this implies

|x′ − x| ≥ 2e−P . (4)

Again, (1) and (4) yield part 2. The proof of part 3 is similar. ut
Similar informal specifications exist in the standard for the three remaining rounding
modes, and conformance theorems for these have been proved in PVS.

Theorem 4. For any realx and rounding modeM, x is semi-representable, if and only
if rd(x,M) = x.

Proof. If rd(x,M) = x, x is semi-representable by theorem 3.1. Conversely, ifx is
semi-representable andM = near, then the round result must equalx by theorem 3.2.
The claim for the remaining rounding modes follows analogously from their respective
conformance theorems. ut

Formal Verification of a Theory of IEEE Rounding 247

4 Exceptions and Wrapped Exponents

The IEEE standard defines five exceptions: invalid operation (INV), division by zero
(DIVZ), overflow (OVF), underflow (UNF), and inexact result (INX). The INV and
DIVZ exceptions are trivial, and therefore not of interest in this paper.

The standard requires that each occurrence of an exception shall set a status flag and
call a trap handler. The trap handler can be disabled on the user’s request. We do not
describe the actual handling of the status flags and the trap handling, since this is part of
the CPU, not part of the FPU. However, since the detection of exceptions, as well as the
final result of floating point operations depend on whether the trap handlers are enabled
or disabled, we need the enable flags for the overflow and underflow exceptionsOVFen
andUNFen, respectively. They are provided by the CPU.

Overflow. The standard defines the overflow exception as follows:

The overflow exception shall be signaled whenever the destination format’s
largest finite number is exceeded in magnitude by what would have been the
rounded floating-point result were the exponent range unbounded.. . .

In lemma 7 we stated thatXmax = 2emax · (2 − 21−P) is the format’s largest rep-
resentable value. Since our rounding function by definition rounds as if the exponent
range was unbounded above, we can define theOVFexception as follows:

OVF(x,M) := (rd(x,M) > Xmax) .

Here,x is the exact result of a floating point operation. TheOVFexception depends on
the rounding mode, since different rounding modes round large numbers differently to
eitherXmax, or to the next value outside the format’s range.

Underflow. The standard defines the underflow exception as follows:

Two correlated events contribute to underflow. One is the creation of a tiny
nonzero result between±2emin (. . .). The other is extraordinary loss of accu-
racy . . .
When an underflow trap (. . .) is not enabled (. . .), underflow shall be signaled
when both tininess and loss of accuracy have been detected. When an under-
flow trap (. . .) is enabled, underflow shall be signaled when tininess is detected
regardless of loss of accuracy.. . .

For each of the contributing events, the standard leaves the choice between two different
implementations. We usetininess before rounding(instead of after rounding) andinex-
act resultas loss of accuracy (instead if denormalization loss). Tininess before rounding
occurs

. . . when a nonzero result computed as though both exponent range and the
precision were unbounded would lie strictly between±2emin .

This is formalized as

TINY(x) := (x 6= 0 ∧ |x| < 2emin) .

248 C. Jacobi

Here again,x is the exact result of a floating point operation, and therefore is “computed
as though both exponent range and the precision were unbounded.” An inexact result
occurs

. . . when the delivered result differs from what would have been computed were
both exponent range and precision unbounded.

We formalize this as
LOSS(x,M) := (rd(x,M) 6= x) .

Loss of accuracy only syntactically depends on the rounding mode, since this is a
required parameter to therd-function. From theorem 4 it followsLOSS(x,M1) =
LOSS(x,M2) for distinct rounding modesMi.

Having defined tininess and loss of accuracy, we can define the underflow exception:

UNF(x,M) := TINY(x) ∧ (LOSS(x,M) ∨UNFen) .

As mentioned above, the standard leaves other choices for the definition ofTINY
andLOSS. We refer the reader to [8, 15] for lemmas about the relations between the
different definitions.

Wrapped Exponent. In case of an overflow or underflow with corresponding traps
enabled, the standard requests to deliver a biased result to the trap handler:

Trapped overflows (. . .) shall deliver to the trap handler the result obtained by
dividing the infinitely precise result by2A and then rounding. The bias adjust
A is 192 in the single, 1536 in the double format.. . .

Note thatA = 3 · 2N−2 with exponent widthN = 8 andN = 11, respectively. Analo-
gously to overflows, trapped underflows shall deliver the result obtained by multiplying
the exact result with2A and then rounding. This is captured in the following definition.
Again,x is the exact result of a floating point operation:

wrapped(x,M) :=

x · 2−A if OVF(x,M) andOVFen,

x · 2A if UNF(x,M) andUNFen,

x otherwise.

Now we are ready to define the final floating point result of operations yielding the
exact resultx:

result(x,M) := rd(wrapped(x,M),M)

Multipliying the result with2±A before rounding scales the result into the representable
range.

Lemma 11. Letx be the exact result of an operation, andM be a rounding mode. As-
sume|x| > 2emin−A (this is fulfilled for+,−,×,÷ operations). Let(ŝ, ê, f̂) := η̂(x).

1. OVF(x,M) =⇒ η(x · 2−A) = (ŝ, ê−A, f̂)
2. TINY(x) =⇒ η(x · 2A) = (ŝ, ê + A, f̂)

Formal Verification of a Theory of IEEE Rounding 249

The IEEE factoring of the wrapped result can therefore be computed by adding/sub-
tractingA from the exponent of the exact̂η-factoring. The above lemma is used in
conjunction with the decomposition theorem to round the wrapped result.

If an overflow is detected with disabled trap, theresult definition above returns a
result exceedingXmax. The standard however requests a final result of either±Xmax

or ±∞, depending on the sign and the rounding mode. This is formalized as a case-
split. We do not cover the details here, since this is a transliteration of Sect. 7.3. of the
standard.

Inexact. The standard defines the inexact exception as follows:

If the rounded result of an operation is not exact or if it overflows without an
overflow trap, then the inexact exception shall be signaled.. . .

It is not clear if the rounded result is meant to berd(x,M) without being wrapped
or result(x,M), which potentially has been wrapped. Harrison [8] defines the inexact
exception as

INX(x,M) := LOSS(x,M) ∨ (OVF(x,M) ∧OVFen).

In contrast, a test on Intel’s Pentium II with the operationx := xmin/2 with enabled
underflow trap andM = up did not yield anINX signal (wherexmin is the smallest
representable value). If theINX signal was computed asrd(x,M) 6= x, the rounded
resultrd(x, up) = xmin would differ fromx and so anINX signal should be set.5

We define the inexact exception as

INX(x,M) := LOSS(wrapped(x,M),M) ∨ (OVF(x,M) ∧OVFen).

This is the definition also used in IBM’s S/390 [10, Pg. 19-22] and in [15], e.g. It has
the advantage that programs can distinguish exact (except for exponent wrapping) from
inexact computations in case of trapped overflows and underflows. For example, the
above computationx := xmin/2 can be represented exactly after having been multi-
plied with2A.

Harrison and we think that the standard is ambiguous in this point (personal com-
munication).

5 α-Equivalence

We now define the concept ofα-equivalence andα-representatives [15]. This concept
is a very concise way to speak about sticky-bit computations.

Letα be an integer. Two realsx andy are said to beα-equivalent(x ≡α y), if x = y
or if there exists someq ∈ Zwith q · 2α < x, y < (q + 1) · 2α, i.e., if bothx andy lie
in the same open interval between two consecutive integral multiples of2α. Clearly, if
such anq exists, it must beqα(x) := bx · 2−αc. Theα-representative ofx is defined as

[x]α :=
{

x if x = qα(x) · 2α,
(qα(x) + 1

2) · 2α otherwise.
5 The test-program is available at out website.

250 C. Jacobi

If x is an integral multiple of2α, the representative ofx is x itself, and the midpoint of
the interval between the surrounding multiples of2α otherwise. The following lemma
summarizes some important facts:

Lemma 12. Letx, y be reals, andα, k be integers.

1. ≡α is an equivalence relation,
2. x ≡α [x]α,
3. x ≡α y ⇐⇒ [x]α = [y]α, (representative equivalence)
4. x ≡α y ⇐⇒ −x ≡α −y, and[−x]α = −[x]α, (negative value)
5. x ≡α y ⇐⇒ 2k · x ≡α+k 2k · y, and[2k · x]α+k = 2k · [x]α, (scaling)
6. x ≡α y ⇐⇒ x + k · 2α ≡α y + k · 2α, (translation)
7. x ≡α y =⇒ x ≡α+k y if k ≥ 0, (coarsening)
8. x = 0 ⇐⇒ x ≡α 0 ⇐⇒ [x]α = 0, (zero value)

Parts 1-5 are simple consequences of the definition, parts 6-8 are proved by induction
onk.

The following theorem describes equivalence on factorings:

Lemma 13. Let x, x′ be nonzero reals,e := ηe(x), e′ := ηe(x′), ê := η̂e(x), ê′ :=
η̂e(x′), andα be an integer. It holds

1. x ≡α y =⇒ sign(x) = sign(y),
2. α ≤ ê andx ≡α x′ =⇒ ê = ê′,
3. α ≤ e andx ≡α x′ =⇒ e = e′,
4. |x| ≥ 2emin andα ≤ e =⇒ ê = η̂e([x]α),
5. |x| < 2emin andα ≤ e =⇒ η̂e([x]α) < emin.

Proof. Due to lack of space, we only prove part 2. With lemma 12.7 it suffices to proof
the claim forα = ê. By part 1 and lemma 12.4 we may assumex, x′ ≥ 0.

Since the claim is trivial forx = x′, we further assume thatqê(x) · 2ê < x, x′ <
(qê(x)+1)·2ê by definition ofα-equivalence. From lemma 3.2, we know1 ≤ x·2−ê <
2, and thereforeqê(x) =

⌊
x · 2−ê

⌋
= 1. We then have2ê < x, x′ < 2ê+1, and therefore

ê = blog xc = blog x′c. Lemma 5 proves the claim. ut
Now we are ready to prove an important theorem, which allows the easy computa-

tion of IEEE-factorings corresponding to representatives:

Theorem 5. Letx ∈ R, let (s, e, f) := η(x) be the corresponding IEEE factoring, and
let p ≥ 0 be an integer. The IEEE factoring of[x]e−p can be computed by computing
the representative[f]−p of f :

η([x]e−p) = (s, e, [f]−p).

Proof. From lemma 13.1 and 13.3 we know thatηs([x]e−p) = s andηe([x]e−p) = e.
From lemma 5 we knowηf ([x]e−p) = |[x]e−p| · 2−e. With lemma 12.4 and 12.5,
we have|[x]e−p| · 2−e = [|x| · 2−e]−p. Lemma 5 gives|x| · 2−e = f , and hence
ηf ([x]e−p) = [f]−p. ut

Formal Verification of a Theory of IEEE Rounding 251

OR

f = fkfk�1 : : : f1f0 f
�1f�2 : : : f

�pf�p�1 : : : f
�l

[f]
�p = fkfk�1 : : : f1f0 f

�1f�2 : : : f
�p sticky

Fig. 1. Computing representatives by sticky-computation

Next, we show that the representative off can be computed by asticky bit computa-
tion. Let f ≥ 0 be a real in binary formatfk, . . . , f0, f−1 . . . , f−l ∈ {0, 1}k+l+1 such
thatf =

∑k
i=−l fi · 2i. Let p be an integer,k ≥ −p > −l. The(−p)-sticky-bit off is

the logical OR of all bitsf−p−1, . . . , f−l (cf. Fig. 1):

sticky−p(f) := f−p−1 ∨ . . . ∨ f−l.

Theorem 6. With the above definitions, the representative[f]−p of f can be computed
by replacing the less significant bits by the sticky bit:

[f]−p =
k∑

i=−p

fi · 2i + 2−p−1 · sticky−p(f)

Proof. By definition,q−p(f) = bf · 2pc, and thereforeq−p(f) =
∑k

i=−p fi · 2i+p.
Furthermore,f = q−p(f) · 2−p, iff sticky−p(f) = 0. Applying this in the definition of
[·]−p proves the claim. ut

Theorems 5 and 6 together allow a very efficient computation of representatives
(respectively their IEEE-factorings) by or-ing the less significant bits in an OR tree, and
replacing them by the sticky bit. This technique is well known [7], but introducing the
formalism withα-representatives allows for a very concise argumentation about these
sticky computations. The verification of the adder circuitry in [3], e.g., relies heavily on
the concept ofα-equivalence.

6 Rounding Representatives

The valuable property ofα-representatives is that roundingx and its representative
[x]e−P yields the same result:

Theorem 7. Letx ∈ R, (s, e, f) := η(x), andM be a rounding mode. It holds

rd(x,M) = rd([x]e−P ,M).

Proof. In [15], this theorem is proved by geometrical arguments. It is technically very
tedious to prove this theorem in the PVS theorem prover. We only give a sketch of the
PVS proof.

By theorems 2 and 5 it suffices to show

sigrd
(
(s, e, f),M)

= sigrd
(
(s, e, [f]−P),M)

.

By unfolding the definitions ofsigrd andrrat, this is equivalent to

rint

(
(−1)s · f · 2P−1,M)

= rint

(
(−1)s · [f]−P · 2P−1,M)

. (5)

252 C. Jacobi

Since the claim is trivial if[f]−P = f , we can assume by the definition ofα-equivalence
thatf ·2P /∈ Z, and[f]−P = (q+0.5)·2−P with q := q−P (f) =

⌊
f · 2P

⌋
. Substituting

[f]−P in (5) yields

rint((−1)s · f · 2P−1,M) = rint((−1)s · (1
4 + 1

2

⌊
f · 2P

⌋)
,M). (6)

The theorem now follows from the next two lemmas (this “now follows” is the
technically complicated part). Lemma 14 proves that the claim is correct ifM 6= near.
Lemma 15 proves that the same cases apply in the definition ofrdint(· , near) on both
sides of equation (6). Then the claim again follows by lemma 14. ut
Lemma 14. For all z ∈ (R \Z) ands ∈ {0, 1}, it holds

b(−1)s · zc =
⌊
(−1)s · (1

4 + 1
2 b2zc)⌋ ,

d(−1)s · ze =
⌈
(−1)s · (1

4 + 1
2 b2zc)⌉ .

Lemma 15. For all z ∈ R, 2z /∈ Z ands ∈ {0, 1}, it holds

dze − z > z − bzc ⇐⇒ dze − (
1
4 + 1

2 b2zc) >
(

1
4 + 1

2 b2zc)− bzc ,

dze − z < z − bzc ⇐⇒ dze − (
1
4 + 1

2 b2zc) <
(

1
4 + 1

2 b2zc)− bzc .

Lemma 14 can be proved by induction onbzc, and some basic properties of the floor
and ceiling-functions from the PVS library. The proof, however, is technical and te-
dious. The first part of lemma 15 is proved automatically by the PVS commandgrind ,
the second part needs little manual assistance.

From the above theorem, one can conclude that the wrapped and rounded result
result(x,M) can be computed using equivalence, too. However, in case of trapped
underflow one needs more precision, namely(ê − P)-equivalence instead of(e − P)-
equivalence:

Theorem 8. Letx ∈ R, ê := η̂e(x), andM be a rounding mode. It holds

result(x,M) = result([x]ê−P ,M).

Proof. This follows from lemma 11 and theorem 7. ut
Not only the rounding can be accomplished by using the representative, but also the

detection of exceptions.

Theorem 9. Letx ∈ R, (s, e, f) := η(x), andM be a rounding mode. It holds

1. OVF(x,M) ⇐⇒ OVF([x]e−P ,M),
2. TINY(x) ⇐⇒ TINY([x]e−P),
3. LOSS(x,M) ⇐⇒ LOSS([x]e−P ,M),
4. UNF(x,M) ⇐⇒ UNF([x]e−P ,M),
5. INX(x,M) ⇐⇒ INX([x]ê−P ,M), whereê := η̂e(x). Here one needs more

precision analogously to theorem 8.

Formal Verification of a Theory of IEEE Rounding 253

Proof. Part 1 is an immediate consequence of theorem 7. Part 2 follows from lemmas
13.4 and 13.5. Part 3 is slightly more complicated. We have to prove

rd(x,M) 6= x ⇐⇒ rd([x]e−P ,M) 6= [x]e−P

By theorem 4, this is equivalent to

η(x) is semi-representable⇐⇒ η([x]e−P) is semi-representable.

By theorem 5 and by definition of representability, this is equivalent to

f · 2P−1 ∈ Z ⇐⇒ [f]−P · 2P−1 ∈ Z.

We may assumef 6= [f]−P , since otherwise the claim is trivial. Now assumef ·2P−1 ∈
Z. Thenq−P (f) =

⌊
f · 2P

⌋
= f ·2P and hence[f]−P = f . In the other casef ·2P−1 /∈

Zwe have[f]−P =
(
q−P (f) + 1

2

) · 2−P . Hence,[f]−P · 2P−1 = 1
2

⌊
f · 2P

⌋
+ 1

4 /∈ Z.

Part 4 is a trivial consequence of the former parts. Part 5 follows analogously to part
3 together with lemma 11. ut

Theorems 8 and 9 enable a subdivision of a complete FPU into computation units
(e.g., adder, multiplier) and a rounder. The computation units compute a result which
need not be exact but(ê − P)-equivalent to the exact result. The rounder therefrom
rounds to the correct floating point number, and computes the exceptions. The passing
of (ê − P)-equivalent approximates of the exact results saves very large intermediate
results, e.g., during addition of the format’s smallest and largest representable numbers.

7 Special Operands

The standard defines special operands such as±∞ and Not-a-Number (NaN). The re-
sults of operations on these special operands are explicitly defined in the standard. The
definitions in PVS are a transliteration of the respective sections in the standard. We
omit the details.

8 Summary

We have described a formally verified theory of rounding. The verification was per-
formed using the theorem prover PVS. The central concepts of the theory arefactorings,
round decomposition, andα-equivalence. These concepts are taken from [6, 15]. The
theorems and proofs presented in this paper are largely based on the paper-and-pencil
proofs in [15].

Since the definition of the rounding function is informal in [6,15], we had to replace
it with a formal one. Our definition is based on the definition of rounding in Miner’s
IEEE formalization [13]. The change of the definition of the rounding function had
major impact on some proofs from [15], in particular in theorems 7 and 9. We had to
fill the informal arguments on rounding with formal ones. Furthermore, we had to fill
the usual gaps and bugs in informal proofs. The proof effort for this theory was about
nine months, including the time to get familiar with PVS. Most of the proofs are work
intensive and use only little automation.

The theory described in this paper has been successfully applied in the verification
of a fully IEEE compliant floating point unit [3], which is developed in the textbook

254 C. Jacobi

[15]. The concepts ofα-equivalence and round decomposition greatly simplified the
verification of the hardware, since we could break up the hardware into smaller building
blocks, which then were verified separately.

AcknowledgmentsThe author would like to thank Christoph Berg, Daniel Kr¨oning,
Silvia Müller, Wolfgang Paul, and Jochen Preiß for valuable discussions.

References

1. M. D. Aagaard and C.-J. H. Seger. The formal verification of a pipelined double-precision
IEEE floating-point multiplier. InICCAD, pages 7–10. IEEE, Nov. 1995.

2. G. Barrett. Formal methods applied to a floating-point number system.IEEE Transactions
on Software Engineering, 15(5):611–621, May 1989.

3. C. Berg and C. Jacobi. Formal verification of the VAMP floating point unit. InCHARME
2001, volume 2144 ofLNCS, 2001.

4. C. Berg, C. Jacobi, and D. Kroening. Formal verification of a basic circuits library. InProc.
of IASTED Int. Conf. on Applied Informatics, Innsbruck (AI 2001). ACTA Press, 2001.

5. Y.-A. Chen and R. E. Bryant. Verification of floating point adders. InCAV’98, volume 1427
of LNCS, 1998.

6. G. Even and W. Paul. On the design of IEEE compliant floating point units. InProceedings
of the 13th Symposium on Computer Arithmetic. IEEE Computer Society Press, 1997.

7. D. Goldberg. Computer arithmetic.In [9] , 1996.
8. J. Harrison. A machine checked theory of floating point arithmetic. InTPHOL ’99, volume

1690 ofLNCS. Springer, 1999.
9. J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann, San Mateo, CA, second edition, 1996.
10. IBM. z/Architecture Principles of Operation. Poughkeepsie, NY, Dec. 2000.
11. Institute of Electrical and Electronics Engineers.ANSI/IEEE standard 754–1985, IEEE Stan-

dard for Binary Floating-Point Arithmetic, 1985.
12. D. Kroening.Formal Verification of Pipelined Microprocessors. PhD thesis, Saarland Uni-

versity, Computer Science Department, 2001.
13. P. S. Miner. Defining the IEEE-854 floating-point standard in PVS. Technical Report TM-

110167, NASA Langley Research Center, 1995.
14. J. S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the AMD5K86

floating point division program.IEEE Transactions on Computers, 47(9):913–926, 1998.
15. S. M. Mueller and W. J. Paul.Computer Architecture. Complexity and Correctness. Springer,

2000.
16. J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. IA-64 floating point operations and the

IEEE standard for binary floating-point arithmetic.Intel Technology Journal, Q4, 1999.
17. S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. InCADE 11,

volume 607 ofLNAI, pages 748–752. Springer, 1992.
18. D. M. Russinoff. A mechanically checked proof of IEEE compliance of the floating point

multiplication, division and square root algorithms of the AMD-K7 processor.LMS Journal
of Computation and Mathematics, 1:148–200, 1998.

19. D. M. Russinoff. A mechanically checked proof of correctness of the AMD K5 floating point
square root microcode.Formal Methods in System Design, 14(1):75–125, Jan. 1999.

20. D. M. Russinoff. A case study in formal verification of register-transfer logic with ACL2:
The floating point adder of the AMD Athlon processor. InProceeding of FMCAD-00, vol-
ume 1954 ofLNCS. Springer, 2000.

