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Abstract. We use our HOL formalization of probability theory to spec-
ify and verify a version of the Miller-Rabin probabilistic primality test.
The version of the test that we implement is guaranteed to terminate and
requires only a source of random bits, but satisfies the same probabilistic
specification as the abstract version presented in algorithm textbooks.
In the course of the verification we formalize a large body of computa-
tional number theory, which is used to evaluate our predicate subtype
prover. The verified version of the algorithm is then manually extracted
to Standard ML, and applied to some examples.

1 Introduction

In this paper we define in HOL a probabilistic function miller rabin and prove
the following two properties of it:

` ∀n, t, s. prime n ⇒ fst (miller rabin n t s) = > (1)
` ∀n, t. ¬(prime n) ⇒ 1− 2−t ≤ P {s : fst (miller rabin n t s) = ⊥} (2)

The miller rabin function takes two natural number parameters n and t (in addi-
tion to a random sequence s): if n is prime then it is guaranteed to return >; if
n is composite then it will return ⊥ with probability at least 1− 2−t. Thus for a
given value of n if miller rabin n t s returns ⊥ then n is definitely composite, but
if it returns > then all we know is that n is probably prime.1 However, setting
t = 50 we see that the probability of the algorithm returning > for an n that is
actually composite is ≤ 2−50 < 10−15.

This algorithm is used to test large numbers for (probable) primality in
computer algebra systems such as Mathematica, and it is also relevant to public
key cryptography software (the RSA algorithm requires a modulus of the form
n = pq where p and q are primes).2

? Supported by an EPSRC studentship
1 Quantifying that ‘probably’ is a hard problem: the probability that n is prime given

that miller rabin n t s returned > depends on the set S from which n was chosen
and the distribution of primes in S.

2 Surprisingly, the popular email encryption program PGP (and the Gnu version GPG)
use the Fermat test to check numbers for primality, although the Miller-Rabin test
is stronger and involves no extra computation.
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We used the theorem-prover hol98 to perform the verification, and the novelty
lies in the fact that this is an algorithm with a probabilistic specification used
in commercial software. We build on our earlier work [7] and show that the
formal probability framework we layed out is up to the challenge. In addition,
we present a version of the verified algorithm that we have manually extracted
to ML. This is not quite identical to the version found in algorithm textbooks,
since they generally assume a generator that can produce uniformly distributed
random numbers in the range {0, . . . , n− 1}, while our version is guaranteed to
terminate and assumes only a generator of random bits.3 The difference is that
while ‘genuine’ random bits are provided by most operating systems (e.g., in
Linux from /dev/random), the generation of uniformly random numbers from
these random bits is slightly delicate.4

A significant amount of number theory is necessary to verify the algorithm,
and Sect. 2 shows how the classical results fit together in the verification. This
formalization actually constituted the bulk of the effort, and provided the testing
ground for our predicate subtype prover. Section 3 describes the somewhat easier
task of interfacing the number theory with the probability theory to produce the
result, and then in Sect. 4 we examine the algorithm extracted to ML. Finally
in Sects. 5–7 we conclude, consider various extensions and look at related work.

1.1 Notation

We use sans serif font to notate HOL constants, such as the function fst that
picks the first component of a pair, the natural number predicate prime, the
greatest common divisor function gcd, and the group predicate cyclic. For stan-
dard mathematical functions we use mathematical font: examples are addition
(a + b), the remainder function (a mod b), function composition (g ◦ f) and Eu-
ler’s totient function (φ(n)). We rely on context to disambiguate |S| to mean
the cardinality of the set S, |g| to mean the order of the group element g, and
a | b | c to mean that both a divides b and b divides c. When doing informal
mathematics, we follow the convenient custom of confusing the group G with its
carrier set; in HOL theorems we explicitly write set G for the carrier set (and
∗G for the operation).

2 Computational Number Theory

2.1 Definitions

Our definition of the Miller-Rabin algorithm is a functional version of the one
presented in Cormen, Leiserson and Rivest [4]. To prepare, we define functions to
3 In this paper, a “generator of random bits” means an infinite sequence of independent

identically distributed (IID) Bernoulli( 1
2
) random variables.

4 Concretely, it is impossible for a terminating algorithm to construct random numbers
uniformly distributed in the range {0, . . . , n−1} from random bits unless n is a power
of 2 [7].
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factor powers of 2 and perform modular exponentiation. Here are the correctness
theorems for these functions:

` ∀n, r, s. 0 < n ⇒ (factor twos n = (r, s) ⇐⇒ odd s ∧ 2rs = n) (3)
` ∀n, a, b. 1 < n ⇒ modexp n a b = (ab mod n) (4)

Next we define a function witness a n that is completely deterministic, simply
returning > if the base a is a ‘witness’ to the compositeness of n and ⊥ otherwise.
We assume that a and n satisfy 0 < a < n. The witness function uses a helper
function witness tail which is defined using pattern-matching:

` (∀n, a. witness tail n a 0 = a 6= 1) ∧
(∀n, a, r.

witness tail n a (suc r) =
let a′ ← (a2 mod n)
in if a′ = 1 then a 6= 1 ∧ a 6= n− 1

else witness tail n a′ r) (5)
` ∀n, a.

witness n a =
let (r, s) ← factor twos (n− 1)
in witness tail n (modexp n a s) r (6)

The witness function calls factor twos to find r, s such that s is odd and
2rs = n− 1, then uses modexp and witness tail to calculate the sequence

(a20s mod n, a21s mod n, . . . , a2rs mod n)

This sequence provides two primality tests for n:

1. a2rs mod n = 1.
2. If a2js mod n = 1 for some 0 < j ≤ r, then either a2j−1s mod n = 1 or

a2j−1s mod n = n− 1.

If n is a prime then we wish to show that both these tests will always be true.
Test 1 is equivalent to aφ(n) mod n = 1 (since 2rs = n− 1 = φ(n) for n prime),
and this is exactly Fermat’s little theorem. For this reason this test for primality
is called the Fermat test. Test 2 is true since for every x, if 0 = (x2−1) mod n =
(x+1)(x−1) mod n, then if n is prime we must have that either (x+1) mod n = 0
or (x − 1) mod n = 0. We thus obtain the following correctness theorem for
witness:

` ∀n, a. 0 < a < n ∧ witness n a ⇒ ¬(prime n) (7)

2.2 Underlying Mathematics

A composite number n that passes a primality test for some base a is called
a pseudoprime. In the case of the Fermat test, there exist numbers n that are



226 Joe Hurd

pseudoprimes for all bases a coprime to n. These numbers are called Carmichael
numbers, and the two smallest examples are 561 and 1729.5 Testing Carmichael
numbers for primality using the Fermat test is just as hard as factorizing them,
since the only bases that fail the test are multiples of divisors. Miller and Rabin’s
insight was that by also performing Test 2, the number of bases that are witnesses
for any composite n will be at least (n − 1)/2, as formalized in the following
theorem:6

` ∀n.

1 < n ∧ odd n ∧ ¬(prime n) ⇒
n− 1 ≤ 2

∣∣{a : 0 < a < n ∧ witness n a}∣∣ (8)

Therefore there are no Carmichael numbers for the Miller-Rabin test, and in
fact just picking bases at random will quickly find a witness. This is the basis
for the Miller-Rabin probabilistic primality test.

We now give a brief sketch of how Theorem 8 is proved, stating which classical
results of number theory are necessary for the result.

The proof aims to find a proper subgroup B of the multiplicative group Z∗n
which contains all the nonwitnesses. This will then imply the result, since by
Lagrange’s theorem the size of a subgroup must divide the size of the group,
and so |B| ≤ |Z∗n|/2 = φ(n)/2 ≤ (n− 1)/2.

If there exists an x ∈ Z∗n such that xn−1 mod n 6= 1, then we choose B =
{x ∈ Z∗n : xn−1 mod n = 1}. The Fermat test ensures that all nonwitnesses
are members of B, and since B is closed under multiplication it is a proper
subgroup of Z∗n. We may therefore assume that for every x ∈ Z∗n we have that
xn−1 mod n = 1.

Now suppose that n = pa is a prime power. In this case Z∗n is cyclic, and
so there exists an element g ∈ Z∗n with order φ(n) = φ(pa) = pa−1(p − 1). But
gn−1 mod n = 1, and so pa−1(p − 1) | pa − 1. This is a contradiction, since
p | pa−1(p− 1) but p 6 | pa − 1, and so we may assume n is not a prime power.

We can therefore find two numbers 1 < a, b with gcd(a, b) = 1 and ab = n.
Next we find a maximal j ∈ {0, . . . , r} such that there exists a v ∈ Z∗n with
v2js mod n = n− 1. Such a j must exist, because since s is odd we can set j = 0
and v = n− 1. Now choose

B = {x ∈ Z∗n : x2js mod n = 1 ∨ x2js mod n = n− 1}
5 1729 is also famous as the Hardy-Ramanujan number, explained by C. P. Snow in the

foreword to Hardy’s A Mathematician’s Apology [6]: “Once, in the taxi from London,
Hardy noticed its number, 1729. He must have thought about it a little because he
entered the room where Ramanujan lay in bed and, with scarcely a hello, blurted
out his disappointment with it. It was, he declared, ‘rather a dull number,’ adding
that he hoped that wasn’t a bad omen. ‘No, Hardy,’ said Ramanujan, ‘it is a very
interesting number. It is the smallest number expressible as the sum of two cubes in
two different ways”. (103 + 93 = 1729 = 123 + 13)

6 In fact, it is possible to prove a stronger result that the number of witnesses must
be at least 3φ(n)/4, and furthermore this bound is exact for the Carmichael number
8911.
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B is closed under multiplication and so is a subgroup of Z∗n; also the maximality
of j ensures that B must contain all nonwitnesses. It remains only to show that
B 6= Z∗n. By the Chinese remainder theorem there exists w ∈ Z∗n such that

w mod a = v mod a ∧ w mod a = 1

and so
w2js mod a = a− 1 ∧ w2js mod b = 1

Therefore by the Chinese remainder theorem w2js mod n is not equal to either
1 or n− 1, and so w /∈ B and the proof is complete.

2.3 Formalization

Formalizing this proof in HOL was a long but mostly routine task, resulting in
the theories depicted in Fig. 1. The most time-consuming activity was a thorough
development of group theory, from the initial axioms through to classical results
such as Lagrange’s theorem (9), Fermat’s little theorem for groups (10) and the
structure theorem for Abelian groups (11):

` ∀G ∈ finite group. ∀H ∈ subgroup G. |set H| ∣∣ |set G| (9)

` ∀G ∈ finite group. ∀ g ∈ set G. g|set G| = e (10)
` ∀G ∈ finite group.

abelian G ⇒ ∃ g ∈ set G. ∀h ∈ set G. h|g| = e (11)

This development also allowed some classical arithmetic theorems to be ex-
pressed in the language of groups, including the Chinese remainder theorem (12)
and the existence of primitive roots (13):

` ∀ p, q.

1 < p ∧ 1 < q ∧ gcd p q = 1 ⇒
(λx. (x mod p, x mod q)) ∈

group iso (mult group pq)
(prod group (mult group p) (mult group q)) (12)

` ∀ p, a. odd p ∧ prime p ∧ 0 < a ⇒ cyclic (mult group pa) (13)

As well as making the arithmetic theorems more concise, this also allowed the
main proof to proceed entirely in the language of groups, eliminating the burden
of switching mathematical context in the middle of a mechanical proof and
incidentally mirroring the informal version of subsection 2.2.

The most difficult part of the whole formalization was Theorem 13 proving
the existence of primitive roots. This required creating whole new theories of
natural number polynomials and Abelian groups for the a = 1 case, and a subtle
argument from Baker [1] for the step case.

One surprising difference between the informal mathematics and the formal-
ization involved the use of the fundamental theorem of arithmetic. This states
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Fig. 1. The dependency relationships between the theories of the HOL formalization.
Boxes indicate pre-existing HOL theories, and circles are theories created for this de-
velopment.
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that every natural number can be uniquely factorized into primes, and many in-
formal mathematical proofs begin by applying this to some variable mentioned in
the goal (e.g., by saying “let pa1

1 · · · pak

k be the prime factorization of n.”) How-
ever, although we had previously formalized the fundamental theorem and it
was ready to be applied, in the mechanical proofs we always chose what seemed
to be an easier proof direction and so never needed it. Two examples of this
phenomenom occur in the structure theorem for Abelian groups (11), and the
cardinality of the witness set (8): the former theorem we formalized using least
common multiples which proves the goal more directly; and in the latter all we
needed was a case split between n being a prime power or being a product of
coprime p, q, so we separately proved this lemma.

Finally, this development provided a testing ground for our predicate subtyp-
ing prover described in a recent paper [8]. Precisely, it was used as a condition
prover in a contextual rewriter, and proved side-conditions such as group mem-
bership (e.g., g ∗G h ∈ set G), simple natural number inequalities (e.g., 0 < n or
1 < mn) and nonemptiness properties of lists and sets (e.g., s 6= ∅).

Originally the aim was that more exotic properties could be proved by the
predicate set prover, but it was found to be most robust on the relatively simple
properties above that come up again and again during rewriting. These prop-
erties naturally propagate upwards through a term, being preserved by most of
the basic operations, and in such situations the predicate set prover can be relied
upon to show the desired condition (albeit sometimes rather slowly). This tool
lent itself to more efficient development of the required theories, particularly the
group theory where almost every theorem has one or more group membership
side-conditions.

If our tool had not been available, it would have been possible to use the first-
order prover to show most of the side-conditions, but there are three reasons why
this is a less attractive proposition: firstly it would have required effort to find
the right ‘property propagation’ theorems needed for the each goal; secondly
the explicit invocations would have led to more complicated tactics; and thirdly
some of the goals that can be proved using our specialized tool would simply
have been out of range of a more general first-order prover.

3 Probability Theory

Recall that in our formalization of probability [7], we model probabilistic algo-
rithms as state-transforming functions B∞ → α × B∞, where the state models
the generator of random bits and has the type B∞ of infinite boolean sequences.

In most algorithm textbooks this is how the Miller-Rabin test is defined:

Given an odd integer n greater than 1, we pick a base a at random from
the set {1, . . . , n − 1} and call witness n a. Suppose n is composite: since at
least (n − 1)/2 of the bases in the set are guaranteed to be witnesses, the
probability that the procedure errs is at most ((n− 1)/2) / (n− 1) = 1/2.

As mentioned in the introduction, this abstract view requires a generator of uni-
form random numbers, but most operating systems provide only a generator of
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random bits. Furthermore, we showed in a previous paper [7] that a terminating
algorithm to generate uniform random numbers in the range {0, . . . , n−1} from
random bits does not exist unless n is a power of 2.7 We therefore cannot directly
use the simple version of Miller-Rabin above, but a single observation leads to
a definition with the same probabilistic specification.

The observation is that the base 1 is always going to be a nonwitness for
every n, so to find witnesses we can pick bases from the subset {2, . . . , n − 1}.
Now if we can guarantee that the probability of picking each element from this
subset is at least 1/(n − 1), then the probability that we pick a witness is still
at least (1/(n− 1))((n− 1)/2) = 1/2.

Using this observation relaxes the requirement for perfectly uniform random
numbers, allowing any distribution that satisfies the lower bound. In our earlier
work [7] we showed how to generate arbitrarily close approximations to uniform
random numbers from random bits. This was done by introducing an extra
parameter t, allowing us to prove the following theorem about the terminating
algorithm uniform:

` ∀ t, n, k. k < n ⇒ ∣∣P {s : fst (uniform t n s) = k} − 1/n
∣∣ ≤ 2−t (14)

Thus if we use the natural number function log2 that is related to calculating
logarithms to the base 2

` ∀n. log2 n = if n = 0 then 0 else suc (log2 (n div 2)) (15)
` ∀n, t.

0 < n ∧ 2(log2 (n + 1)) ≤ t ⇒
2−t ≤ 1/n− 1/(n + 1) (16)

then the following theorem holds:

` ∀ t, n, k.

k < n ∧ 2(log2 (n + 1)) ≤ t ⇒
1/(n + 1) ≤ P {s : fst (uniform t n s) = k} (17)

Now we can define (one iteration of) the Miller-Rabin probabilistic primality
test

` ∀n, s.

miller rabin 1 n s =
if n = 2 then (>, s)
else if (n = 1) ∨ even n then (⊥, s)
else

let (a, s′) ← uniform (2(log2 (n− 1))) (n− 2) s

in (¬(witness n (a + 2)), s′) (18)
7 Here we are referring to guaranteed termination on every input sequence, not ter-

mination with probability 1.
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satisfying the correctness theorems

` ∀n, s. prime n ⇒ fst (miller rabin 1 n s) = > (19)
` ∀n. ¬(prime n) ⇒ 1/2 ≤ P {s : fst (miller rabin 1 n s) = ⊥} (20)
` ∀n. indep (miller rabin 1 n) (21)

In order to define the full Miller-Rabin which tests several bases, we create
a new (state-transformer) monadic operator many. The intention of many p n
is a test that repeats n times the test p using different parts of the random
bit stream, returning true if and only if each evaluation of p returned true.
For instance, sdest is the destructor function for a stream, and so the function
many sdest 10 tests that the next 10 booleans in the random stream are all >.
Here is the definition of many and basic properties:

` (∀ f. many f 0 = unit >) ∧
(∀ f, n.

many f (suc n) = bind f (λx. if x then many f n else unit ⊥)) (22)
` ∀ f, n. indep f ⇒ P {s : fst (many f n s)} = (P {s : fst (f s)})n (23)
` ∀ f, n. indep f ⇒ indep (many f n) (24)

Using the new many monadic operator it is simple to define the Miller-Rabin
function miller rabin

` ∀n, t. miller rabin n t = many (miller rabin 1 n) t (25)

and finally Theorems 1 and 2 from the introduction follow from Theorems 19–24.

4 Extracting the Algorithm to Standard ML

The advantage of extracting the algorithm to a standard programming language
such as ML is twofold: firstly execution is more efficient, and so the algorithm
can be applied to usefully large numbers; and secondly it can be packaged up as
a module and used as a reliable component of larger programs.

However, there is a danger that the properties that have been verified in the
theorem-prover are no longer true in the new context. In this section we make a
detailed examination of the following places where the change in context might
potentially lead to problems: the source of random bits, the arbitrarily large
natural numbers, and the manual translation of the Miller-Rabin functions to
ML. Finally we test the algorithm on some examples, to check again that nothing
has gone amiss and also to get some idea of the performance and computational
complexity of the code.

4.1 Random Bits

Our theorems are founded on the assumption that our algorithms have access
to a generator of perfectly random bits: each bit has probability of exactly 1

2 of
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being either 1 or 0, and is completely independent of every other bit. In the real
world this idealized generator cannot exist, and we must necessarily select an
approximation.

The first idea that might be considered is to use a pseudo-random number
generator. These have been extensively analysed (for example by Knuth [10]) and
pass many statistical tests for randomness, but their determinism makes them
unsuitable for applications that require genuine unpredictability. For instance,
when generating cryptographic keys it is not sufficient that the bits appear ran-
dom, they must be truly unpredictable even by an adversary intent on exploiting
the random number generator used.

Rejecting determinism, we must turn to the operating system for help. Many
modern operating systems can utilize genuine non-determinism in the hardware
to provide a higher quality of random bits. For example, here is a description of
how random bits are derived and made available in Linux, excerpted from the
relevant man page:

“The random number generator gathers environmental noise from device
drivers and other sources into an entropy pool. The generator also keeps an
estimate of the number of bit[s] of the noise in the entropy pool. From this
entropy pool random numbers are created.

When read, the /dev/random device will only return random bytes within
the estimated number of bits of noise in the entropy pool. /dev/random should
be suitable for uses that need very high quality randomness such as one-time
pad or key generation. When the entropy pool is empty, reads to /dev/random

will block until additional environmental noise is gathered.

When read, /dev/urandom device will return as many bytes as are re-
quested. As a result, if there is not sufficient entropy in the entropy pool, the
returned values are theoretically vulnerable to a cryptographic attack on the
algorithms used by the driver. Knowledge of how to do this is not available in
the current non-classified literature, but it is theoretically possible that such
an attack may exist. If this is a concern in your application, use /dev/random

instead.”

These devices represent the highest quality source of randomness to which we
have easy access, and so we have packaged them up as ML boolean streams for
use in our extracted program.

4.2 Arbitrarily Large Natural Numbers

Another place where there is a potential disparity between HOL and ML regards
their treatment of numbers. The HOL algorithm operates on the natural numbers
{0, 1, 2, . . .}, while in ML the primitive type int contains signed numbers in a
range depending on the machine architecture.

We resolved this incompatibility by creating the ML module HolNum, which
implements an equality type num of arbitrarily large natural numbers. The Miller-
Rabin functions may then use this type of numbers, and the arithmetic opera-
tions will behave exactly as in HOL.
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We first implemented our own large number module, written in the purely
functional subset of ML (and using a word vector representation of numbers).
However, this was found to be about 100 times slower than the Moscow ML
interface to the GNU Multi-Precision library, so we switched to this instead.

4.3 Extracting from HOL to ML

A further place where errors could creep in is the manual extraction of the Miller-
Rabin functions from HOL to ML. Consequently we did this in two steps, the
first of which was creating a new HOL theory containing a version of all the
functions we wish to extract. For example, in Theorem 22 the monadic operator
many was defined like so

` (∀ f. many f 0 = unit >) ∧
(∀ f, n. many f (suc n) = bind f (λx. if x then many f n else unit ⊥))

and in this new HOL theory we prove it is equivalent to

` ∀ f, n.

many f n =
if n = 0 then unit >
else bind f (λx. if x then many f (n− 1) else unit ⊥)

so that we may export it to ML as

fun MANY f n =

if n = ZERO then UNIT true

else BIND f (fn x => if x then MANY f (n -- ONE) else UNIT false);

As can be seen here the ML version involves some lexical changes, but has
precisely the same parse tree as the intermediate HOL version. This reduces the
chance of errors introduced by the cut-and-paste operation.

An intellectually interesting problem in the extraction is the question of how
to handle partial functions. Consider the HOL function uniform that generates
(approximations to) uniform random numbers:

` ∀ t, n. uniform t (suc n) s = if t = 0 then unit 0 else . . .

The function is deliberately underspecified: there is no case where the second
argument takes the value 0 because it does not make sense to talk of random
numbers uniformly distributed over the empty set. HOL allows us to define
functions like this, but there is no immediate ML equivalent. In the intermediate
HOL version, we prove it to be equivalent to

` ∀ t, n.

uniform t n = if n = 0 then uniform t n else if t = 0 then unit 0 else . . .

This rather strange theorem represents a total version of the uniform function.
Of course if we simply extract this to ML it will loop forever when called with
second argument 0, so we extract in the following way:
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fun uniform t n =

if n = ZERO then raise Fail "uniform: out of domain"

else if t = ZERO then UNIT ZERO

else ...

This device allows us to faithfully extract partial functions with as much
confidence as for total functions.

4.4 Testing

It would be pleasant to say that since the function had been mechanically ver-
ified, no testing was necessary. But the preceding subsections have shown that
this would be naive. Even if we are prepared to trust the generation of random
bits, the operations of our arbitrarily large number module and the manual ex-
traction of the algorithms, testing would still be prudent to catch bugs at the
interface between these components.

We tested in the following way: for various values of l, generate n odd can-
didate numbers of length l bits. Perform a quick compositeness test on each by
checking for divisibility by the first l primes, and also run Miller-Rabin with
the maximum number of bases fixed at 50. The results are displayed in Table 1.
El,n(composite) is equal to n(1 − Pl(prime)) and mathematically estimates the
number of composites that the above algorithm will consider as candidates.8 QC
is the number of candidates that were found to be divisible by the quick com-
positeness test, MR is the number that the Miller-Rabin algorithm found to be
composite, and finally MR+ is the number of candidates that the Miller-Rabin
algorithm needed more than one iteration to determine that it was composite.

The most important property for testing purposes cannot be deduced from
the table: for each number that the quick compositeness test found to be com-
posite, the Miller-Rabin test also returned this result (and as can be seen, this
almost always required only one iteration). In the other direction, using the El,n

column as a guide, we can see that the Miller-Rabin algorithm did not find many
more composites than expected.

In Table 2 we compare for each l the average time in seconds9 taken to
generate a random odd number, subject it to the quick composite test, and
perform one iteration of the Miller-Rabin algorithm.

The complexity of (one iteration of) the Miller-Rabin algorithm is around
O(l2 log l), since it uses asymptotically the same number of operations as mod-
ular exponentiation (Cormen [4]). However, performing linear regression on the
8 Using the prime number theorem, π(n) ∼ n/ log n, we can derive:

Pl(prime) =
π(2l)− π(2l−1)

2l−2
∼ 2

log 2

(
2

l
− 1

l − 1

)

9 The results in this paper were produced using the Moscow ML 2.00 interpreter and
RedHat Linux 6.2, running on a computer with a 200MHz Pentium Pro processor
and 128Mb of RAM.
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Table 1. Testing the Extracted Miller-Rabin Algorithm

l n El,n QC MR MR+

10 100000 74352 70262 70683 520
15 100000 82138 72438 80448 85
20 100000 86332 74311 85338 5
50 100000 94347 79480 94172 0

100 100000 97144 82258 97134 0
150 100000 98089 83401 98077 0
200 100000 98565 84370 98557 0
500 100000 99424 86262 99458 0

1000 100000 99712 87377 99716 0
1500 100000 99808 87935 99798 0
2000 100000 99856 88342 99852 0

Table 2. Profiling the Extracted Miller-Rabin Algorithm

l Gen time QC time MR1 time

10 0.0004 0.0014 0.0028
15 0.0007 0.0017 0.0041
20 0.0009 0.0019 0.0054
50 0.0023 0.0034 0.0136

100 0.0068 0.0075 0.0370
150 0.0107 0.0112 0.0584
200 0.0157 0.0156 0.0844
500 0.0443 0.0416 0.2498

1000 0.0881 0.0976 0.7284
1500 0.1543 0.2164 1.7691
2000 0.3999 0.2843 4.2910

Fig. 2. Graph of log(MR1 time) against log l.
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log-log graph in Fig. 2 gives a good fit with degree 1.32, implying a complexity of
O(l1.32). We can only conclude that the GNU Multi-Precision library is heavily
optimized for the ‘small’ numbers in the range we were using, and so we cannot
expect an asymptotically valid result.10

5 Conclusion

In this paper we have shown that our HOL probability theory is powerful enough
to formally specify and verify the Miller-Rabin primality test, a well-known and
commerically used probabilistic algorithm. The verification highlighted a small
gap between theory and implementation, namely the difference between having
a generator of uniformly distributed random numbers and a generator of random
bits. An extra observation bridged this gap in the proof, and we were able to
produce a version of Miller-Rabin using random bits that was guaranteed to
terminate and satisfied the required probabilistic specification.

The predicate subtype condition prover helped to make the proof develop-
ment more efficient, it was particularly useful for proving group membership
conditions and simple but ubiquitous arithmetic conditions. Our evaluation is
that it is a useful tool for reasoning about term properties that naturally prop-
agate up terms. Overall, the proof script for the whole verification is 8000 lines
long over 16 theories.

The difference between formal and informal proofs in their use of the fun-
damental theorem of arithmetic was pointed out in Subsection 2.3. This is the
most striking example of many small differences in the style of informal and for-
mal proofs, stemming from the different proof consumers in each case. Machines
make it easier to formalize principles of induction such as dividing out a prime
or prime power factor of a number, whereas humans would seem to be better at
manipulating the multisets that contain the prime factors.

We have extracted an algorithm to Standard ML that takes as input a number
and a stream of random bits, and declares the number either to be composite or
probably prime, with a formally specified probability. Probabilistic algorithms
such as these are difficult to get right since testing must necessarily be statistical,
in this paper we have given arguments that our version has a high assurance of
correctness.

6 Further Work

The verification of the Miller-Rabin algorithm is a fairly self-contained project,
demonstrating the expressivity of our probability theory. However, there is work
still to be done on the underlying tools and theories.
10 When we ran this experiment using our own purely functional implementation of

arbitrarily large numbers, it was a different story. Performing linear regression on
the log-log graph gave a good fit with degree 2.98, confirming the theoretical result
since we used the simple O(l2) algorithm for multiplication. Garbage collection was
minimal, typically accounting for less than 5% of the time taken.
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Firstly, since we now have a preliminary evaluation of the predicate subtype
prover, we must decide the direction in which to advance it. On the one hand it
may be possible to widen its effective scope by including rules for building up
more complicated predicate sets, or on the other hand it may be most useful
to speed up the performance and make it more robust on the scope we have
identified in this paper. The path we take may depend on how far we can push
the underlying higher-order prover.

Our probability theory is also ripe for development. Although it is general
enough to capture any programs that use random bits, there are still new con-
stants we can define to make formalization easier. An example in this paper
was the many monadic operator, we are confident there will be others that will
become apparent when we formalize more probabilistic algorithms.

Finally the extraction to ML was an interesting part of this project, and we
built from scratch the infrastructure that allowed us to do this for our algorithm.
It may be useful to push this further, perhaps aiming for a whole library of
verified functions.

7 Related Work

There has been a long history of number theory formalizations, most rele-
vantly for us: Russinoff’s proof of Wilson’s theorem in the Boyer-Moore theorem-
prover [12]; Boyer and Moore’s correctness proof of the RSA algorithm in ACL2
[2]; and Théry’s correctness proof of RSA in three different theorem-provers [13].
This last work was especially useful, since one of the theorem-provers was hol98,
and we were able to use his proof of the binomial theorem in our own develop-
ment.

The closest work in spirit to this paper is Caprotti and Oostdijk’s [3] primality
proving in Coq, in which they formalize a similar computational number theory
development and utilize a computer algebra system to prove numbers prime.
Seeing this work improved the organization of theories in our own formalism.
Harrison has also implemented a primality prover in HOL (Light), using Pratt’s
criterion instead of Pocklington’s.

Our own development of group theory benefitted from the higher-order logic
formalisms of Gunter [5], Kamueller [9] and Zammit [14], but the theory of
groups has been formalized in many different theorem-provers.

There exist other formalizations of probability, and some have been applied
to analysing probabilistic programs. It is conceivable that the same work could
have been carried out using the probabilistic predicate transformers of Morgan
et. al. [11], except that this formalism has not yet been mechanized.
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