
Quotient Types

Peter V. Homeier

U. S. Department of Defense, homeier@saul.cis.upenn.edu
http://www.cis.upenn.edu/˜homeier

Abstract. The quotient operation is a standard feature of set theory,
where a set is divided into subsets by an equivalence relation; the re-
sulting subsets of equivalent elements are called equivalence classes. We
reinterpret this idea for Higher Order Logic (HOL), where types are di-
vided by an equivalence relation to create new types, called quotient
types. We present a tool for the Higher Order Logic theorem prover to
mechanically construct quotient types as new types in the HOL logic,
and also to define functions that map between the original type and the
quotient type. Several properties of these mapping functions are proven
automatically. Tools are also provided to create quotients of aggregate
types, in particular lists, pairs, and sums. These require special atten-
tion to preserve the aggregate structure across the quotient operation.
We demonstrate these tools on an example from the sigma calculus.

1 Quotient Sets

Quotient sets are a standard construction of set theory. They have found wide
application in many areas of mathematics, including algebra and logic. The
following description is abstracted from [3].

A binary relation∼ on S is an equivalence relation if it is reflexive, symmetric,
and transitive.

reflexive: ∀x ∈ S. x ∼ x
symmetric: ∀x, y ∈ S. x ∼ y ⇒ y ∼ x
transitive: ∀x, y, z ∈ S. x ∼ y ∧ y ∼ z ⇒ x ∼ z

Let ∼ be an equivalence relation. Then the equivalence class of x (modulo ∼) is
defined as [x]∼

def= {y | x ∼ y}. It follows [3] that

[x]∼ = [y]∼ ⇔ x ∼ y.

The quotient set S/∼ is defined by

S/∼ def= {[x]∼ | x ∈ S}.

This is the set of all equivalence classes modulo ∼ in S.
A partition Π of a set S is a set of nonempty subsets of S that is disjoint

and exhaustive. Then S/∼ is a partition of S [3].

192 P. V. Homeier

2 Quotient Types

Now let us reinterpret this for the Higher Order Logic theorem prover, whose
logic is a type theory, rather than a set theory. The following definitions and
proofs are accomplished within HOL [4]. Let τ be any type; then a binary relation
on τ can be represented in HOL as a curried function of type τ → (τ → bool).
Let E be an equivalence relation, which is a binary relation satisfying

reflexivity: ∀x : τ. E x x
symmetry: ∀x y : τ. E x y ⇒ E y x
transitivity: ∀x y z : τ. E x y ∧ E y z ⇒ E x z

We will take advantage of the curried nature of E, where E x y = (E x) y.

Definition 1. The equivalence class of x : τ (modulo E) is [x]E
def= E x.

This is the characteristic function of the [x]E from set theory. As before,

Lemma 2. [x]E = [y]E ⇔ E x y

Proof: We prove this as a biconditional.
Case 1. (⇒) Assume [x]E = [y]E , which is E x = E y by definition 1. Then

E x y = E y y, which is true by reflexivity.
Case 2. (⇐) Assume E x y. We must show that [x]E = [y]E , which by

definition 1 is E x = E y. This is equality between functions, which by extension
follows from ∀z. E x z ⇔ E y z. We prove this as a biconditional.

Case 2.1. (⇒) Assume E x z. Since E x y, E y x follows by symmetry and
then E y z follows by transitivity.

Case 2.2. (⇐) Assume E y z. Since E x y, E x z follows by transitivity. 2

New types may be defined in HOL using the function new type definition
[4, sections 18.2.2.3-5]. This function requires us to choose a representing type,
and a predicate on that type denoting a subset that is nonempty.

We define as a new type the quotient type τ/E by the representing type
τ → bool, and the predicate P : (τ → bool) → bool where

Definition 3. P f
def= ∃x. f = [x]E .

P is nonempty because P [x]E for all x : τ . Let τ ′ = τ/E. We then use the HOL
tool define new type bijections [4], which automatically defines a bijection
and its inverse, b cc : (τ → bool) → τ ′ and d ec : τ ′ → (τ → bool), such that

Theorem 4. (∀a : τ ′. b daeccc = a) ∧ (∀f : τ → bool. P f ⇔ (d bfccec = f))

and returns theorem 4 as its result. For this P , we can prove:

Theorem 5. (∀a : τ ′. b daeccc = a) ∧ (∀r : τ. d b [r]Eccec = [r]E).

Proof: The left conjunct comes directly from theorem 4. Also by that theorem,
the right conjunct is equivalent to ∀r. P [r]E . Then P [r]E = (∃x. [r]E = [x]E)
which is proven true by choosing x = r. 2

Quotient Types 193

Lemma 6 (d ec is onto equivalence classes). ∀a. ∃r. daec = [r]E

Proof: By the left clause of theorem 4, b daeccc = a, so taking the d ec of both
sides, d b daecccec = daec. By the right clause of theorem 4, this implies P daec.
By the definition of P , this is the goal. 2

Lemma 7 (b cc is one-to-one). ∀x y. b [x]Ecc = b [y]Ecc ⇔ [x]E = [y]E

Proof: We will prove this as a biconditional.
Case 1.(⇒) Assume b [x]Ecc = b [y]Ecc. Taking the d ec of both sides gives

us d b [x]Eccec = d b [y]Eccec. By the right clause of theorem 5, [x]E = [y]E .
Case 2.(⇐) Assume [x]E = [y]E . Then applying b cc to both sides yields the

goal, b [x]Ecc = b [y]Ecc. 2

The functions b cc and d ec map between equivalence classes of type τ → bool
and the quotient type τ ′. Using these functions, we can define new functions b c
and d e between the original type τ and the quotient type τ ′ as follows.

Definition 8 (Quotient maps).

b c : τ → τ ′ bxc def= b [x]Ecc (= bE xcc)
d e : τ ′ → τ dae def= $@ daec (= @x. daec x = @x. ([x]E = daec))

The @ operator, which is here used as a prefix unary operator $@, is a higher
order version of Hilbert’s choice operator ε [4]. It has type (α → bool) → α, and
is usually used as a binder, where $@ t = @x. t x. Given a predicate Q on a type,
if any element of the type satisfies the predicate, then $@ Q returns an arbitrary
element of that type which satisfies Q. If no element of the type satisfies Q,
then $@ Q will return simply some unknown, arbitrary element of the type. The
axiom in HOL about the behavior of @ is ∀t x. t x ⇒ t ($@ t). In the definition
above, it selects some arbitrary representative x such that the equivalence class
of x is the class representating a.

Lemma 9. ∀r. [$@ [r]E]E = [r]E

Proof: The axiom for the @ operator is ∀t x. t x ⇒ t ($@ t). Taking t = E r and
x = r, we have E r r ⇒ E r ($@ E r). But E r r by reflexivity, so by modus
ponens, E r ($@ (E r)). Then by lemma 2, [r]E = [$@ (E r)]E , from which the
goal follows by definition 1. 2

Theorem 10. ∀a. b dae c = a

Proof: By lemma 6, there exists an r such that daec = [r]E . Then

b dae c = b [$@ daec]Ecc definition 8
= b [$@ [r]E]Ecc selection of r
= b [r]Ecc lemma 9
= b daeccc selection of r
= a theorem 4

2

194 P. V. Homeier

Theorem 11. ∀r r′. E r r′ ⇔ (brc = br′c)
Proof: E r r′ ⇔ [r]E = [r′]E lemma 2

⇔ b [r]Ecc = b [r′]Ecc lemma 7
⇔ brc = br′c definition 8

2

It is significant to note that the combination of theorems 10 and 11 succinctly
express all that is necessary to use the quotient type. These theorems completely
characterize the mapping functions between the original and quotient types.

3 New Quotient Type Definitions

In this section we describe how to use the main tool for defining quotient types,
the function define quotient type. This function automates the reasoning de-
scribed in the last section, creating the quotient type as a new type in the HOL
logic, and also defining the mapping functions between the types, relating them
as described in theorems 10 and 11.

The new type is created by the quotient type package by internally mak-
ing use of the HOL primitive, new type definition. All definitions are accom-
plished as definitional extensions of HOL, and thus preserve HOL’s consistency.

Before invoking the quotient package, the user should define an equivalence
relation on the original type ty. The equivalence relation should be expressed
as a constant EQUIV, of type ty -> ty -> bool. The user should prove that
EQUIV is indeed an equivalence relation, by proving three theorems of the
following forms:

reflexivity |- !a. EQUIV a a
symmetry |- !a b. EQUIV a b = EQUIV b a
transitivity |- !a b c. EQUIV a b /\ EQUIV b c ==> EQUIV a c

Then the new quotient type may be constructed by the following function.

define quotient type : string -> string -> string ->
thm -> thm -> thm -> thm

Evaluating

define quotient type "tyname" "abs" "rep"
|- !a:ty. EQUIV a a
|- !a b:ty. EQUIV a b = EQUIV b a
|- !a b c:ty. EQUIV a b /\ EQUIV b c ==> EQUIV a c

automatically declares a new type tyname in the HOL logic as the quotient type
ty/EQUIV , which we will refer to from here on as newty, and declares two new
constants abs:ty->newty and rep:newty->ty, such that

|- (!a. abs(rep a) = a) /\ (!r r’. EQUIV r r’ = (abs r = abs r’))

Quotient Types 195

This theorem, which could be the defining property for the constants abs
and rep, is stored in the current theory under the automatically-generated name
tyname QUOTIENT. It is also the value returned by define quotient type. This
theorem states that abs is the left inverse of rep, and that abs maps equivalence
between values of ty to equality between values of newty. Theorems of this form
are much used in this package. Since they are often referred to, we give them
the special name of “quotient theorems.”

Observe that abs and rep are total functions, and are one-to-one and onto,
up to equivalence. For any element of ty, abs maps it to the element in newty
which corresponds to the equivalence class containing that element. Also, for any
element of newty, rep maps it to an element of ty which is some element of the
corresponding equivalence class. We do not know exactly which one is chosen,
but we do know that since rep is a function, it yields the same representative
element each time for the same element of newty.

The three theorem arguments concerning reflexivity, symmetry, and transi-
tivity are equivalent to a single theorem of the form

|- !a b:ty. (EQUIV a = EQUIV b) = EQUIV a b

4 Properties of Quotient Types

Given a quotient theorem, there are several tools provided in the package that
prove and return useful derivative results.

prove quotient rep abs equiv : thm -> thm
prove quotient rep abs equal : thm -> thm
prove quotient rep abs equal2 : thm -> thm
prove quotient equal is rep equiv : thm -> thm
prove quotient equiv rep one one : thm -> thm
prove quotient abs iso equiv : thm -> thm
prove quotient rep fn onto : thm -> thm
prove quotient abs fn onto : thm -> thm
prove quotient equiv equal : thm -> thm
prove quotient equiv refl : thm -> thm
prove quotient equiv sym : thm -> thm
prove quotient equiv trans : thm -> thm

Each of these takes as its argument a quotient theorem of the form returned
by define quotient type:

|- (!a. abs(rep a) = a) /\ (!r r’. EQUIV r r’ = (abs r = abs r’))

If th is of this form, then evaluating prove quotient rep abs equiv th
proves that rep is the left inverse of abs, up to equivalence, returning the theorem:

|- !r. EQUIV (rep (abs r)) r

196 P. V. Homeier

Evaluating prove quotient rep abs equal th proves that the composition
of rep with abs of a value has the same equivalence class as the original value:

|- !r. EQUIV (rep (abs r)) = EQUIV r

Evaluating prove quotient rep abs equal2 th proves a symmetric version
of the same idea, both of which are useful for rewriting:

|- !r r’. EQUIV r (rep (abs r’)) = EQUIV r r’

Evaluating prove quotient equal is rep equiv th proves that equality be-
tween abstract values is equivalence between representatives:

|- !a a’. (a = a’) = EQUIV (rep a) (rep a’)

Evaluating prove quotient rep fn one one th proves that rep is one-to-one:

|- !a a’. (rep a = rep a’) = (a = a’)

Evaluating prove quotient abs iso equiv th proves that abs and EQUIV
are isomorphic with respect to equality:

|- !r r’. (abs r = abs r’) = (EQUIV r = EQUIV r’)

Evaluating prove quotient rep fn onto th proves that rep is onto, up to
equivalence:

|- !r. ?a. EQUIV r (rep a)

Evaluating prove quotient abs fn onto th proves that abs is onto:

|- !a. ?r. a = abs r

Evaluating prove quotient equiv equal th proves that equality between
equivalence classes is equivalence between elements:

|- !x y. (EQUIV x = EQUIV y) = EQUIV x y

Evaluating prove quotient equiv refl th proves that EQUIV is reflexive:

|- !x. EQUIV x x

Evaluating prove quotient equiv sym th proves that EQUIV is symmetric:

|- !x y. EQUIV x y = EQUIV y x

And evaluating prove quotient equiv trans th proves that EQUIV is tran-
sitive:

|- !x y z. EQUIV x y /\ EQUIV y z ==> EQUIV x z

The last three functions are useful when the quotient theorem th is derived
from another source than define quotient type.

None of these functions saves anything on the current theory file. In fact, it
should usually be unnecessary to save the results proved by these functions, since
they can be generated quickly whenever required from the theorem returned by
define quotient type, which is is itself saved.

Quotient Types 197

5 Aggregate Quotient Types

At times one wishes to take the quotients of a family of related types in parallel.
This can be done by applying define quotient type repeatedly to each of the
types. This is fine if the original types are independent of each other. However, if
these types are related structurally, where for example some of them are formed
as lists or pairs of other types in the family, then that structural information
would be forgotten by this approach.

If we were intending to recreate the logical structure that existed among
the original types, modulo the equivalence relations, then we have not precisely
succeeded. If we use define quotient type to näıvely create the quotients of
the list and pair types, then the resulting new types are not themselves in fact
list or pair types. It turns out that they are isomorphic to list and pair types,
but they are not identical. Since they are not recognized within HOL as list and
pair types, we lose all connection to the exiting body of theory within HOL that
is available to treat lists and pairs, and we must laboriously reconstruct what
portions we need for these new quotient types.

To avoid this, the quotient package offers several functions for constructing
the quotients of list types, pair types, and sum types.

new list equiv and quotient maps
new pair equiv and quotient maps
new sum equiv and quotient maps

new equiv and quotient maps

new list quotient maps
new pair quotient maps
new sum quotient maps

new quotient maps

These functions define the mapping functions between the old and new types,
and prove key theorems about their behavior. These functions do not create new
types, since the types are formed using the list, prod, and sum type operators.

The first four functions listed also define as a new constant the equivalence
relation for the aggregate type (list, pair, or sum). The last four expect the
equivalence relation to be previously defined, and take as an argument a theorem
about its value on all the ways the aggregate type can be constructed.

new equiv and quotient maps is a uniform interface to the first three func-
tions, and new quotient maps is a uniform interface for the three before it.

These functions all take as arguments quotient theorems relating to the types
of the component elements of the aggregate type. Sometimes one desires to
perform the quotient operation on some components but not on others. In these
cases, to indicate a component which is not to be divided, the argument provided
should be instead the standard theorem TRUTH, |- T.

198 P. V. Homeier

Each of the first four functions returns a triple of three theorems. The first
theorem of the triple is a definition of the equivalence relation which has been
defined, for each combination of the constructors of the aggregate type. The
second theorem of the triple describes the definition of the abstraction and rep-
resentation functions, mapping between the new and old types, in terms of the
abstraction and representation functions of the respective element types. The
third theorem of the triple is a quotient theorem, of the same form as that
returned by define quotient type, relating to the aggregate type.

Each of the last four functions listed returns a pair of two theorems, which
are the same as the second and third theorems of the triple described above.

All of the theorems returned by these functions are saved in the current
theory under automatically-generated names.

It is the presence of the theorem that defines the mapping functions that pro-
vides additional information about the mapping functions, beyond that available
using define quotient type. This structure, present among the original types,
might have been lost among the new types by the näıve approach. The structure
would have been there implicitly, but not explicitly recognized within HOL as
lists, pairs, and sums.

5.1 List quotients by a new equivalence relation

To define an equivalence relation between lists based on an equivalence relation
on the elements, and then use it to define the mapping functions between types
of lists of original and quotient types, the following ML function is provided:

new_list_equiv_and_quotient_maps :
string -> string -> string -> string ->
hol_type -> thm -> (thm # thm # thm)

Evaluating

new list equiv and quotient maps "name" "EQUIV" "abs" "rep"
list-type elem-quotient-thm

where list-type is of the form (ty)list, and where elem-quotient-thm is a quo-
tient theorem

|- (!a:newty. elem-abs(elem-rep a) = a) /\
(!r r’:ty. EQUIV-elem r r’ = (elem-abs r = elem-abs r’))

automatically defines an equivalence relation
EQUIV: (newty)list -> (newty)list -> bool such that

|- (!e1 e2 l1 l2.
EQUIV (e1::l1) (e2::l2) =
EQUIV-elem e1 e2 /\ EQUIV l1 l2) /\

(EQUIV [] [] = T) /\
(!e l. EQUIV (e::l) [] = F) /\
(!e l. EQUIV [] (e::l) = F)

Quotient Types 199

and two new constants abs:(ty)list->(newty)list and
rep:(newty)list->(ty)list such that:

|- ((abs [] = []) /\
(!e l. abs (e::l) = elem-abs e :: abs l)) /\
((rep [] = []) /\
(!e l. rep (e::l) = elem-rep e :: rep l))

|- (!a. abs(rep a) = a) /\
(!r r’. EQUIV r r’ = (abs r = abs r’))

and returns a triple of these three theorems. Note that the third is a quotient
theorem for the list type. These theorems are stored in the current theory under
the names EQUIV DEF, name MAPS DEF, and name QUOTIENT, respectively.

5.2 List quotients by an existing equivalence relation

To define the mapping functions between types of lists of original and quotient
types, using an already-defined equivalence relation, the following ML function
is provided:

new_list_quotient_maps :
string -> string -> string -> thm -> thm -> (thm # thm)

Evaluating

new list quotient maps "name" "abs" "rep"
list-def-thm elem-quotient-thm

where list-def-thm is of the form:

|- (!e1 e2 l1 l2.
EQUIV (e1::l1) (e2::l2) =
EQUIV-elem e1 e2 /\ EQUIV l1 l2) /\

(EQUIV [] [] = T) /\
(!e l. EQUIV (e::l) [] = F) /\
(!e l. EQUIV [] (e::l) = F)

and where elem-quotient-thm is a quotient theorem

|- (!a:newty. elem-abs(elem-rep a) = a) /\
(!r r’:ty. EQUIV-elem r r’ = (elem-abs r = elem-abs r’))

automatically defines two new constants abs:(ty)list->(newty)list and
rep:(newty)list->(ty)list such that:

|- ((abs [] = []) /\
(!e l. abs (e::l) = elem-abs e :: abs l)) /\
((rep [] = []) /\
(!e l. rep (e::l) = elem-rep e :: rep l))

|- (!a. abs(rep a) = a) /\
(!r r’. EQUIV r r’ = (abs r = abs r’))

200 P. V. Homeier

and returns a pair of these two theorems. Note that the second is a quotient
theorem for the list type. These theorems are stored in the current theory under
the names name MAPS DEF and name QUOTIENT, respectively.

5.3 Pair quotients by a new equivalence relation

To define an equivalence relation between pairs based on equivalence relations
between the elements, and then use it to define the mapping functions between
old and new types of pairs of quotient types, the following ML function is pro-
vided:

new_pair_equiv_and_quotient_maps :
string -> string -> string -> string ->
hol_type -> thm -> thm -> (thm # thm # thm)

Evaluating

new pair equiv and quotient maps "name" "EQUIV" "abs" "rep"
pair-type left-quotient-thm right-quotient-thm

where pair-type is of the form (ty1 # ty2), and where left-quotient-thm is either
|- T or a quotient theorem of the form

|- (!a:newty1. left-abs(left-rep a) = a) /\
(!r r’:ty1. EQUIV-left r r’ = (left-abs r = left-abs r’))

and where right-quotient-thm is either |- T or a quotient theorem of the form

|- (!a:newty2. right-abs(right-rep a) = a) /\
(!r r’:ty2. EQUIV-right r r’ = (right-abs r = right-abs r’))

automatically defines an equivalence relation
EQUIV: (newty1 # newty2) -> (newty1 # newty2) -> bool such that

|- !a1 a2 b1 b2.
EQUIV (a1,b1) (a2,b2) =
EQUIV-left a1 a2 /\ EQUIV-right b1 b2

and two new constants abs:(ty1 # ty2)->(newty1 # newty2) and
rep:(newty1 # newty2)->(ty1 # ty2) such that:

|- (!a b. abs (a,b) = (left-abs a,right-abs b)) /\
(!a b. rep (a,b) = (left-rep a,right-rep b))

|- (!a. abs(rep a) = a) /\
(!r r’. EQUIV r r’ = (abs r = abs r’))

(or simpler versions of these theorems, depending on which elements of the pair
are being divided) and returns a triple of these three theorems. Note that the
third is a quotient theorem for the pair type. These theorems are stored in the
current theory under names EQUIV DEF, name MAPS DEF, and name QUOTIENT,
respectively.

Quotient Types 201

5.4 Pair quotients by an existing equivalence relation

To define the mapping functions between types of pairs of original and quotient
types, the following ML function is provided:

new_pair_quotient_maps :
string -> string -> string ->
thm -> thm -> thm -> (thm # thm)

Evaluating

new pair quotient maps "name" "abs" "rep"
pair-def-thm left-quotient-thm right-quotient-thm

where pair-def-thm is of the form

|- !a1 a2 b1 b2.
EQUIV (a1,b1) (a2,b2) =
EQUIV-left a1 a2 /\ EQUIV-right b1 b2

and where left-quotient-thm is either |- T or a quotient theorem of the form

|- (!a:newty1. left-abs(left-rep a) = a) /\
(!r r’:ty1. EQUIV-left r r’ = (left-abs r = left-abs r’))

and where right-quotient-thm is either |- T or a quotient theorem of the form

|- (!a:newty2. right-abs(right-rep a) = a) /\
(!r r’:ty2. EQUIV-right r r’ = (right-abs r = right-abs r’))

automatically defines two new constants abs:(ty1 # ty2)->(newty1 # newty2)
and rep:(newty1 # newty2)->(ty1 # ty2) such that:

|- (!a b. abs (a,b) = (left-abs a,right-abs b)) /\
(!a b. rep (a,b) = (left-rep a,right-rep b))

|- (!a. abs(rep a) = a) /\
(!r r’. EQUIV r r’ = (abs r = abs r’))

(or simpler versions of the theorems, depending on which elements of the pair are
being divided) and returns a pair of these two theorems. Note that the second is
a quotient theorem for the pair type. These theorems are stored in the current
theory under the names name MAPS DEF and name QUOTIENT, respectively.

5.5 Sum quotients

Quotients of sum types are handled in a way precisely analagous to that of
pair types, as above, with the exception that the equivalence relation has the
type EQUIV: (newty1 + newty2) -> (newty1 + newty2) -> bool, and the
theorem defining the equivalence relation between sums has the form:

202 P. V. Homeier

|- (!a a’. EQUIV (INL a) (INL a’) = EQUIV-left a a’) /\
(!b b’. EQUIV (INR b) (INR b’) = EQUIV-right b b’) /\
(!a b. EQUIV (INL a) (INR b) = F) /\
(!a b. EQUIV (INR b) (INL a) = F)

and the theorem defining the mapping functions has the form:

|- ((!a. abs (INL a) = INL (left-abs a)) /\
(!b. abs (INR b) = INR (right-abs b))) /\
((!a. rep (INL a) = INL (left-rep a)) /\
(!b. rep (INR b) = INR (right-rep b))) .

5.6 Uniform interfaces for aggregate quotients

The following ML functions are provided as uniform interfaces to the previous
aggregate quotient tools, where the quotient theorems for the components are
gathered into a list argument:

new equiv and quotient maps :
string -> string -> string -> string ->
hol type -> thm list -> (thm # thm # thm)

new quotient maps :
string -> string -> string ->
thm -> thm list -> (thm # thm)

Depending on the particular type, the appropriate specific function is called.

6 The Sigma Calculus

The untyped sigma calculus was introduced by Abadi and Cardelli in A Theory
of Objects [1]. It highlights the concept of objects, rather than functions.

We will use the sigma calculus as an example to demonstrate the quotient
package tools. We will first define an initial or “pre-”version of the language
syntax, and then create the refined or “pure” version by performing a quotient
operation on the initial version.

The pre-sigma calculus contains terms denoting objects and methods. We
define the sets of object terms O1 and method terms M1 inductively as

(1) x ∈ O1 for all variables x;
(2) m1, . . . , mn ∈ M1 ⇒ [l1=m1, . . . , ln=mn] ∈ O1 for all labels l1, . . . , ln;
(3) a ∈ O1 ⇒ a.l ∈ O1 for all labels l;
(4) a ∈ O1 ∧ m ∈ M1 ⇒ a.l W m ∈ O1 for all labels l;
(5) a ∈ O1 ⇒ ς(x)a ∈ M1 for all varibles x.
[l1 =m1, . . . , ln =mn] denotes a method dictionary, as a finite list of entries,

each li = mi consisting of a label and a method. There should be no duplicates
among the labels, but if there are, the first one takes precedence.

The form a.l denotes the invocation of the method labelled l in the object a.
The form a.l W m denotes the update of the object a, where the method labelled

Quotient Types 203

l (if any) is replaced by the new method m. The form ς(x)a denotes a method
with one formal parameter, x, and a body a. ς is a binder, like λ in the lambda
calculus. x is a bound variable, and the scope of x is the body a. In this scope,
x represents the “self” parameter, the object itself which contains this method.

Given the pre-sigma calculus, we define the pure sigma calculus by identify-
ing object and method terms which are alpha-equivalent [2]. Thus in the pure
sigma calculus, ς(x)x.l1 = ς(y)y.l1, [l1 = ς(x)x] = [l1 = ς(y)y], et cetera. This is
accomplished by forming the quotients of the types of pre-sigma calculus object
and method terms by their alpha-equivalence relations. Thus O = O1/≡o

α and
M = M1/≡m

α , where ≡o
α and ≡m

α are the respective alpha-equivalence relations.

7 The Pre-Sigma Calculus in HOL

Hol98 supports the definition of new nested mutually recursive types by the
Hol datatype function in the bossLib library.

The syntax of the pre-sigma calculus is defined as follows.

val _ = Hol_datatype

(* obj1 ::= x | [li=mi] i in 1..n | a.l | a.l:=m *)
‘ obj1 = OVAR1 of var

| OBJ1 of (string # method1) list
| INVOKE1 of obj1 => string
| UPDATE1 of obj1 => string => method1 ;

(* method1 ::= sigma(x)a *)
method1 = SIGMA1 of var => obj1 ‘ ;

This creates the new mutually recursive types obj1 and method1, and more also.
The definition above goes beyond simple mutual recursion of types, to involve

what is called “nested recursion,” where a type being defined may appear deeply
nested under type operators such as list, prod, or sum. In the above definition,
in the line defining the OBJ1 constructor function, the type method1 is nested,
first as the right part of a pair type, and then as the element type of a list type.

The Hol definition tool automatically compensates for this complexity,
creating in effect four new types, not simply two. It is as if the tool created the
intermediate types

entry1 = string # method1
dict1 = (entry1)list

except that these types are actually formed by the prod and list type operators,
not by creating new types. It turns out that when defining mutually recursive
functions on these types, there must be four related functions defined simulta-
neously, one for each of the types obj1, dict1, entry1, and method1. Similarly,
when proving theorems about these functions, one must use mutually recursive
structural induction, where the goal has four parts, one for each of the types.

Now we will construct the pure sigma calculus from the pre-sigma calculus.

204 P. V. Homeier

8 The Pure Sigma Calculus in HOL

We define the pure sigma calculus in steps, with the results of some steps being
used in later steps. Specifically, the quotient theorem created for methods is used
to create the quotient theorem for entries, which is itself then used to create the
quotient theorem for dictionaries.

Let us assume that we have defined alpha-equivalence relations for each of the
four types obj1, dict1, entry1, and method1, called ALPHA obj, ALPHA dict,
ALPHA entry, and ALPHA method. Let us further assume that we have proven
the reflexivity, symmetry, and transitivity of each of these, as theorems called
ALPHA obj REFL, ALPHA obj SYM, ALPHA obj TRANS, et cetera. Finally, we as-
sume that we have proven that the alpha-equivalence of dict1 and entry1 can
be expressed in terms of the alpha-equivalence of their components, as theorems

ALPHA_dict_DEF
|- (!e1 e2 d1 d2.

ALPHA_dict (e1::d1) (e2::d2) =
ALPHA_entry e1 e2 /\ ALPHA_dict d1 d2) /\

(ALPHA_dict [] [] = T) /\
(!e d. ALPHA_dict (e::d) [] = F) /\
(!e d. ALPHA_dict [] (e::d) = F)

ALPHA_entry_DEF
|- !l1 l2 m1 m2.

ALPHA_entry (l1,m1) (l2,m2) =
(l1 = l2) /\ ALPHA_method m1 m2

We first define the pure sigma calculus types obj and method:

- val obj_QUOTIENT =
define_quotient_type "obj" "obj_ABS" "obj_REP"

ALPHA_obj_REFL ALPHA_obj_SYM ALPHA_obj_TRANS;
> val obj_QUOTIENT =

|- (!a. obj_ABS (obj_REP a) = a) /\
(!r r’. ALPHA_obj r r’ = (obj_ABS r = obj_ABS r’)) : thm

- val method_QUOTIENT =
define_quotient_type "method" "method_ABS" "method_REP"

ALPHA_method_REFL ALPHA_method_SYM ALPHA_method_TRANS;
> val method_QUOTIENT =

|- (!a. method_ABS (method_REP a) = a) /\
(!r r’. ALPHA_method r r’ = (method_ABS r = method_ABS r’))

: thm

Now, since the equivalence relations for entry1 and dict1 are previously
defined, we will use the tools that make use of their definitions.

Quotient Types 205

We next define the abstraction and representation functions for the entry =
(string # method) type as follows:

- val (entry_MAPS_DEF, entry_QUOTIENT) =
new_pair_quotient_maps "entry" "entry_ABS" "entry_REP"

ALPHA_entry_DEF TRUTH method_QUOTIENT;
> val entry_MAPS_DEF =

|- (!a b. entry_ABS (a,b) = (a,method_ABS b)) /\
(!a b. entry_REP (a,b) = (a,method_REP b)) : thm

val entry_QUOTIENT =
|- (!a. entry_ABS (entry_REP a) = a) /\

(!r r’. ALPHA_entry r r’ = (entry_ABS r = entry_ABS r’))
: thm

Now we can define the abstraction and representation functions for the dict =
(entry)list type as follows:

- val (dict_MAPS_DEF, dict_QUOTIENT) =
new_list_quotient_maps "dict" "dict_ABS" "dict_REP"

ALPHA_dict_DEF entry_QUOTIENT;
> val dict_MAPS_DEF =

|- ((dict_ABS [] = []) /\
(!e l. dict_ABS (e::l) = entry_ABS e::dict_ABS l)) /\
((dict_REP [] = []) /\
(!e l. dict_REP (e::l) = entry_REP e::dict_REP l)) : thm

val dict_QUOTIENT =
|- (!a. dict_ABS (dict_REP a) = a) /\

(!r r’. ALPHA_dict r r’ = (dict_ABS r = dict_ABS r’)) : thm

If the ALPHA entry and ALPHA dict relations were previously undefined, then
the ALPHA entry relation could have been defined using method QUOTIENT.

- val (ALPHA_entry_DEF, entry_MAPS_DEF, entry_QUOTIENT) =
new_pair_equiv_and_quotient_maps

"entry" "ALPHA_entry" "entry_ABS" "entry_REP"
(==‘:string # method1‘==) TRUTH method_QUOTIENT;

> val ALPHA_entry_DEF =
|- !a1 b1 a2 b2.

ALPHA_entry (a1,b1) (a2,b2) =
(a1 = a2) /\ ALPHA_method b1 b2 : thm

val entry_MAPS_DEF =
|- (!a b. entry_ABS (a,b) = (a,method_ABS b)) /\

(!a b. entry_REP (a,b) = (a,method_REP b)) : thm
val entry_QUOTIENT =
|- (!a. entry_ABS (entry_REP a) = a) /\

(!r r’. ALPHA_entry r r’ = (entry_ABS r = entry_ABS r’))
: thm

206 P. V. Homeier

Then we would define the ALPHA dict relation using entry QUOTIENT.

- val (ALPHA_dict_DEF, dict_MAPS_DEF, dict_QUOTIENT) =
new_list_equiv_and_quotient_maps

"dict" "ALPHA_dict" "dict_ABS" "dict_REP"
(==‘:(string # method1)list‘==) entry_QUOTIENT;

> val ALPHA_dict_DEF =
|- (!e1 l1 e2 l2.

ALPHA_dict (e1::l1) (e2::l2) =
ALPHA_entry e1 e2 /\ ALPHA_dict l1 l2) /\

(ALPHA_dict [] [] = T) /\
(!e1 l1. ALPHA_dict (e1::l1) [] = F) /\
(!e2 l2. ALPHA_dict [] (e2::l2) = F) : thm

val dict_MAPS_DEF =
|- ((dict_ABS [] = []) /\

(!e l. dict_ABS (e::l) = entry_ABS e::dict_ABS l)) /\
((dict_REP [] = []) /\
(!e l. dict_REP (e::l) = entry_REP e::dict_REP l)) : thm

val dict_QUOTIENT =
|- (!a. dict_ABS (dict_REP a) = a) /\

(!r r’. ALPHA_dict r r’ = (dict_ABS r = dict_ABS r’)) : thm

Constructors for the quotient types can be defined using the mapping functions:
OVAR x

def= bOVAR1 xco, OBJ b
def= bOBJ1 dbed co, SIGMA x a

def= bSIGMA1 x daeo cm,
etc. Now we have SIGMA x (OVAR x) = SIGMA y (OVAR y), etc., as intended. The
pure sigma calculus is thus accomplished by identifying alpha-equivalent terms.

9 Conclusions

We have implemented a package for mechanically defining quotient types which
is a conservative, definitional extension of the HOL logic.

Quotients are useful in a variety of contexts, as shown in the literature.
Some systems are convenient to model initially at one level of granularity, but

have properties which are only true at a larger level of granularity. For example,
the pure sigma calculus is Church-Rosser, while the pre-sigma calculus is not.

For an extended example of the use of this package in a significant proof, and
for more information on these and other new HOL tools, please see [5].

Soli Deo Gloria.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag 1996.
2. Barendregt, H.P.: TheLambdaCalculus, Syntax and Semantics. North-Holland, 1981.
3. Enderton, H. B.: Elements of Set Theory. Academic Press, 1977.
4. Gordon, M. J. C., Melham, T. F.: Introduction to HOL. Cambridge University Press,

Cambridge, 1993.
5. Homeier, P. V.: http://www.cis.upenn.edu/~hol/lamcr.

