
The implementation of an unusual higher-order
logic?

M. Randall Holmes

Boise State University

Abstract. The aim of this paper is to discuss issues which arose in
the implementation of a theorem prover based on an unusual higher-
order logic, namely the set theory NFU proposed by Jensen in 1969 as
a variant of the notorious theory “New Foundations” of Quine. Both of
these theories provide a universal set, something not found in familiar
set theories. This is implemented in the form of an equivalent λ-calculus
developed by the author. The theorem prover in which it is implemented
is Watson, developed by the author since 1990 (an earlier version of the
prover was called Mark2). The implementation of quantification using
the higher-order logic of Watson is described in the paper, in order to
give some impression of issues that arose in the practical implementation
of this logic.

1 Introduction

References for the set theories NFU and NF are the papers [11] of Jensen and
[13] of Quine. More recent and longer treatments are given in Forster’s [3] and
our [10]. For the Watson theorem prover see [8]. Papers on the logic of Watson
are [7] (which introduced the “stratified λ-calculus” implemented in Watson,
though this was implicit in our earlier [5]) and [9]. [8] and [9] cover all aspects
of the logic of the prover, and if anything shortchange issues connected with its
higher-order logic (and its relation to NFU); [7] emphasized this but was written
before much practical experience had been gained with implementation and use
of the stratified λ-calculus.

Most refinements of the implementation of the higher-order logic have been
made in response to problems encountered in the course of implementing first-
order logic. The logic of quantification is not handled by logical primitives in the
logic of Watson, but implemented in terms of the higher-order logic. Rigidities in
the naive initial implementation of the stratified λ-calculus led to difficulties in
the handling of quantification, which have at this point been repaired; the repair
process led to a deeper understanding of the practical aspects of implementing
this logic, which is something of which we hope to give some impression in this
paper.

? The author gratefully acknowledges the support of US Army Research Office grant
DAAG55-98-1-0263

176 M. R. Holmes

The higher-order logic of Watson is unusual in being untyped – at least in
a sense. The sense in which it is untyped deserves some investigation: there is
a polymorphic type theory lurking invisibly at its foundations, and some of the
recent developments have given it explicit machinery for handling absolute types.
Part of our program is the investigation of the implementation of typed theories
in the untyped logic of Watson: the way in which types are implemented involved
the application in a practical context of concepts hitherto of purely theoretical
interest in NF -like theories (in particular, the notion of a strongly cantorian set).

2 What is the Logic?

In this section we briefly describe the set theory NFU and the stratified λ-
calculus.

NFU is a first-order theory with equality, membership, and the projection
relations π1 and π2 of a primitive ordered pair as primitive predicates. We enrich
our language with definite descriptions (ιx.φ), intended to mean “The unique x
such that φ” if there is such an object, and otherwise the empty set. The empty
set ∅ is given as a primitive constant.

The set theoretical axioms of this version of NFU follow.

empty set: x 6∈ ∅
weak extensionality: x ∈ A → (A = B ≡ (∀y.y ∈ A ≡ y ∈ B))
ordered pair: (∀z.(∃xy.(∀w.zπ1w → w = x ∧ zπ2w → w = y)))

∧ (∀xy.(∃z.(∀w.(wπ1x ∧ wπ1y) ≡ w = z)))

The first axiom tells us that the empty set has no elements. The second one
says that nonempty sets with the same elements are equal: there may be many
objects with no elements. The third axiom tells us that the projection relations
really are projection relations. They allow us to introduce the ordered pair 〈x, y〉
as (ιz.zπ1x ∧ zπ2y), and ensure that this pair has the correct properties. The
pair is not assumed to be surjective, though this assumption could be made and
has some advantages. The presence of the empty set as a primitive allows us to
make the following

Definition: We define set(x) (read “x is a set”) as x = ∅ ∨ (∃y.y ∈ x).

It follows from the axioms of empty set and weak extensionality that sets
with the same elements are equal. We call non-sets urelements.

We now present the comprehension scheme of NFU . This requires a definition
as a preamble.

Definition: Let φ be a formula in the language of NFU . We say that a partial
function σ from the terms of the language of NFU to the natural numbers
(or, equivalently, to the integers) is a stratification of φ if it satisfies the
conditions that for each atomic subformula of φ of the forms x = y, xπ1y or
xπ2y with x and y both in the domain of σ, we have σ(x) = σ(y) and for

Implementation of an Unusual Higher-order Logic 177

each atomic formula x ∈ y with x and y both in the domain of σ, we have
σ(x) + 1 = σ(y), while for each complex term (ιx.φ) which appears in φ we
have σ((ιx.φ)) = σ(x): further, we require that every variable bound in φ
and every definite description in φ belong to the domain of σ. We say that
the formula φ is stratified if there is a stratification of φ.

We will regard a formula as stratified if it is possible to get a stratification
by renaming bound variables. It is convenient to be able to talk about stratified
terms as well as stratified formulas: a formula (ιx.φ) is said to be stratified under
the same conditions that (∀x.φ) is said to be stratified.

We can now present the

Axiom scheme of stratified comprehension: For each formula φ in which
the variable A is not free, (∃A.(∀x.x ∈ A ≡ φ)) is an axiom if it is stratified.
(Note that it is not sufficient under our definition for φ to be stratified: it
is necessary for the variable x, which is not necessarily bound in φ, to be in
the domain of the stratification).

It follows that for each formula φ such that (∃A.(∀x.x ∈ A ≡ φ)) is stratified
there is a unique set (ιA.set(A) ∧ (∀x.x ∈ A ≡ φ)), which we can abbreviate
{x | φ}.

NFU as presented here is an untyped theory, in the sense that all objects are
of the same sort. But the criterion of stratification for comprehension axioms
is a typability criterion. A formula is stratified just in case it can be typed in
a version of Russell’s simple theory of types (as simplified by Ramsey), with
constants (and parameters) interpreted polymorphically. We reflect this in our
terminology by referring to the value of a stratification of φ at a term which
appears in φ as the relative type of that term in φ.

We have extended the language of NFU with the definite description opera-
tor: it is straightforward to show that the criterion of stratification for formulas
with definite descriptions given here is precisely equivalent to the criterion for
stratification for equivalent formulas obtained by the usual contextual elimina-
tion of definite descriptions (due to Russell). The advantage of this extension
is that it makes it clear how stratification works for term constructions. NFU
could be further extended by allowing the Hilbert operator (εx.φ) with the same
stratification conditions as (ιx.φ); this would have the effect of adjoining the
axiom of choice to the theory.

We have essentially strengthened NFU by including type level projection
operators in our language: this has essentially the same effect (mod technicalities)
as adjoining an axiom of infinity to NFU as formulated in [11] (the consistency of
NFU + Infinity is shown there as well). The type level projection operators have
the further technical advantage that they simplify the properties of the ordered
pair and of functions and relations. What makes the pair 〈x, y〉 whose definition
is given above “type-level” is that it is assigned the same type as its projections
x and y for purposes of stratification. We could define {x} as {y | y = x} and
{x, y} as {z | z = x ∨ z = y}, and then define the usual Kuratowski ordered

178 M. R. Holmes

pair {{x}, {x, y}}. This term is well-typed in the sense that it can appear in
stratified formulas, but the value of a stratification at a term {{x}, {x, y}} will
be two higher than its value at x and y, so it is not type-level. This would prove
inconvenient in the handling of functions and relations.

An advantage of defining NFU in a way which includes term constructions
(and an ordered pair) is that it requires less preliminary development to present
the natural interpretation of the stratified λ-calculus in NFU than it does in the
usual formulation. We present some definitions.

Definition: We define function(f) (read “x is a function”) as set(f)∧(∀zw.(z ∈
f ∧ w ∈ f) → ((∃xy.z = 〈x, y〉) ∧ (∀x.(zπ1x ∧ wπ1x) → z = w))). This says
that all elements of f are ordered pairs and no two distinct elements of f
have the same first projection. (Note that the empty set is a function but
other objects with no elements (urelements) are not).

Definition: We define f(x) as (ιy. 〈x, y〉 ∈ f). We define dom(f) as
{x | (∃y. 〈x, y〉 ∈ f)}.

Note that f(x) has the same relative type as x in any stratification, while f
has relative type one higher than that of x or f(x). If we had used the Kuratowski
pair, f would have had to have type three higher than that of x or f(x).

We can prove an extensionality theorem for functions, which we state without
proof:

Extensionality theorem for functions: (function(f) ∧ function(g)
∧ dom(f) = dom(g) ∧ (∀x.f(x) = g(x))) → f = g.

We will usually concern ourselves with functions f such that dom(f) = {x |
x = x} (functions of universal domain), so the requirement that functions have
the same domain will automatically be satisfied.

Further, we can present an abstraction meta-theorem (analogous to the strat-
ified comprehension axiom).

Definition: We define {〈x, y〉 | φ} as {z | z = 〈x, y〉 ∧ φ} (where z is a new
variable).

Definition: Let T be a term. We define (λx.T) as {〈x, y〉 | y = T}.
Stratified Abstraction Meta-Theorem: For any term T , (∀x.(λx.T)(x) =

T) is a theorem if it is stratified.

Note that the term (λx.T) represents a function of universal domain if it is
not the empty set due to a failure of stratification. The term (λx.T) has relative
type one higher than the variable x, if it has a stratification.

Additional term constructions are needed for the interpretation of the logic
of Watson in NFU . We need terms to code truth values: V = {x | x = x} (the
universal set) is used to represent true; ∅ is used to represent false. To code
a formula φ, use the term (ιx.φ → x = V) (if φ is true, this is V ; if φ is false,
this is ∅ by the default interpretation of definite descriptions). The definition
of terms by cases is important under Watson: we define ifA thenB elseC as

Implementation of an Unusual Higher-order Logic 179

(ιx.A = V → x = B ∧ T 6= V → x = C): if A is the universal set (which codes
true) then this term is equal to B, and otherwise it is equal to C.

The stratified λ-calculus is an equational theory. Its basic term constructions
are variables, the constants true, false, the function application T (U), the
ordered pair 〈T,U〉 and the projection functions π1 and π2, definition by cases
ifT thenUelseV, equation terms T = U , and the abstraction term (λx.T).

A complete formal description of this calculus is given in [9]. Here we restrict
our attention to issues related specifically to the higher-order logic, especially
the application and implementation of the notion of stratification.

The formulation of the abstraction axiom of stratified λ-calculus is quite
analogous to the formulation of the stratified comprehension scheme. The clauses
of the definition of relative type given below are what would be expected from
the definition of these constructions given above in NFU .

Definition: A stratification of a term T is a partial function σ from terms to
integers with all subterms of T which contain variables in its domain, having
the following properties:
pair, equality, cases: If σ maps U = V or 〈U, V 〉 to n, it also maps U and

V to n. If σ maps ifU thenV elseW to n, then it maps U , V , and W
to n.

function application: If σ maps U(V) to n, it maps U to n + 1 and V to
n.

abstraction: If σ maps (λx.U) to n, it maps x and U to n− 1.
If there is a stratification of T , we say that T is stratified . We will regard
T as stratified if a renaming of bound variables will enable one to construct
a stratification. The value of a stratification of T which sends T to 0 at
a subterm U of T is called the relative type of U in T , and is uniquely
determined under this definition.

The abstraction scheme of the stratified λ-calculus is as follows:

Abstraction Scheme: For any stratified term (λx.T), (λx.T)(U) = T [U/x],
where T [U/x] denotes the result of substituting U for x in T (with due
respect for the usual technicalities involving bound variables).

The stratified λ-calculus has no explicit extensionality axiom. But note that
if we can prove (∀x.f(x) = g(x)), we will be able to prove (λx.f(x)) = (λx.g(x))
using properties of equality. A weak extensionality is implicit in the ability to
substitute equals for equals inside abstraction terms, which lets one prove that
co-extensional abstraction terms are equal. Strong extensionality asserts f =
(λx.f(x)) for all f ; this says “every object is a function”. The stratified λ-
calculus with strong extensionality is known to be equivalent to NF (see [5]),
which is not known to be consistent.

It turns out to be convenient to allow unstratified λ-terms to be well-formed
in Watson (earlier versions of Watson, and the formalization of stratified λ-
calculus in [7], treated stratification as a condition for well-formedness of terms).
The details are in [9]; there is further brief discussion of the use of unstratified
abstraction terms below.

180 M. R. Holmes

3 Implementing the Logic

We give an informal summary of Watson term constructions.

free variables: A question mark followed by a string of alphanumerics which
is not a numeral, as ?x

bound variables: A question mark followed by a numeral, as ?2
constants: Strings of alphanumerics, as a, 12. Numerals and a few special ob-

jects are predeclared. Other constants are declared in Watson theories.
infix terms: A term, followed by an operator (a string of special characters)

followed by a term. Parentheses may be used as needed; Watson supports
user defined operator precedence and left or right grouping. The predeclared
infix @ represents function application; the predeclared infix , represents
ordered pair. Operators can be declared or defined in user-defined theories.

prefix terms: An operator, followed by a term. Users can declare or define
prefix operators.

abstraction terms: A term enclosed in brackets. De Bruijn levels are used to
determine variable binding: the bound variable ?1 is bound in the outermost
set of brackets in a context, the bound variable ?2 is bound in the second
from the outside, and so forth.

We describe the implementation of stratification in the prover. Each infix
operator has a left type and a right type; each prefix operator has a right type. The
left and right types are the types which would be assigned to the left and right
arguments of a term built with the operator if the whole term were assigned type
0. For example, + (in a reasonable implementation of arithmetic) has left type
and right type 0, because the arguments of the addition operator have the same
relative type as the whole term; @, the function application operator, has left
type 1 and right type 0, because the left argument of an application is one type
higher than the whole application term, while the right type has the same type
as the whole term. Negative type displacements are possible. For example, the
unary operator ‘iota (an initial backquote converts an alphanumeric string into
an operator in Watson syntax) defined by the equation ‘iota ?x = [?x=?1]
(this codes the construction of singleton sets, if we code sets as characteristic
functions), has right type −1: the type of the argument ?x is one lower than
that of its “singleton set” ‘iota ?x.

We define an ML datatype representing a subset of the Watson language:
it would clearly not be hard to extend the data type and the definition of the
stratification function to the full language.

free variables: If s is a string, FreeVar s is a term.
bound variables: If n is a numeral, BoundVar n is a term.
infix term: If T and U are terms and s is a string, Infix(T,s,U) is a term (s

is used here as the name of an operator).
abstraction term: If T is a term, Function T is a term.

Implementation of an Unusual Higher-order Logic 181

We assume the existence of a type of finite partial functions from natural
numbers to integers augmented with an error value Error (distinct from the
empty function) and a function merge which takes two finite functions as ar-
guments and returns the union of the two functions if the union is a function
and Error if the union of the two functions is not a function or if one of the
arguments is Error.

We are provided with functions left and right which will give us the left
and right types of an operator when applied to its name.

The stratification function strat takes three arguments, a natural number
level indicating how many abstraction brackets enclose the current context
(this manages the reference of bound variables), an integer type indicating the
relative type of the (occurrence of a) subterm being considered, and an element
of the term data type. We define the function strat by recursion on the term
type. strat will return a finite function (or Error).

free variables: strat level type (FreeVar s) will be the empty function.
bound variables: strat level type (BoundVar n) will be the finite func-

tion {(n,type)} unless n > level, signalling a variable binding error, in
which case Error will be returned.

infix terms: strat level type (Infix(T,s,U)) will be merge(strat level
(type+left(s)) T,strat level (type+right(s)) U).
merge is used to check consistency of relative typing.

abstraction terms: strat level type (Function T) will be the restriction
to values less than or equal to level of merge({(level+1,type-1)},strat
(level+1) (type-1) (Function T)) (where any restriction of Error
is taken to be Error). The fact that the value at level+1 is discarded allows
us to stratify terms that would otherwise need to be stratified by renaming
bound variables. The use of merge ensures that all occurrences of the cur-
rently bound variable are assigned the correct type (if indeed the currently
bound variable is assigned any type at all).

For any term T not a subterm of any abstraction term, the value strat 0 0
T will be the empty function if T is stratified and Error if it is not.

There are two versions of the stratification function, differing in their treat-
ment of free variables. The usual version (given here) treats free variables as
polymorphic (i.e., occurrences of the same free variable may occur in a strati-
fied term with different relative types). A version used by the definition utility
of Watson also types free variables: functions and operators can be given pa-
rameterized definitions in Watson, and in such definitions it must be possible
to demand consistent relative types for free variables as well. Constants (not
provided here) are always treated polymorphically.

We begin our discussion of the implementation of Watson with this strati-
fication function in mind. We will discover fairly soon that it is too rigid and
needs to be refined; but we will discuss the refinement after discovering why it
is needed.

182 M. R. Holmes

4 A Case Study: Implementing Quantifiers Using
Stratified Abstraction

The basic logic of Watson is equational. Watson theorems are equations between
terms, implicitly universally quantified over their free variables, and the basic
logical move in Watson is the application of such an equational theorem as a
rewrite rule.

Watson has no built-in logic of propositions (quantified or otherwise). Propo-
sitional logic can be implemented using the built-in logic of expressions defined
by cases or as a user-declared equational theory (which has advantages if a non-
classical logic (as a temporal logic or a logic of belief) is to be implemented). We
will need to give a little thought to the properties of the propositional operators
in the course of the development, but the details of their implementation are not
important here.

Quantifiers are defined using the higher-order logic. If a term T codes a
proposition φ (has value true or false depending on whether φ is true or false)
then the term (λx.T) = (λx.true) codes (∀x.φ). If stratified abstraction is to be
used to code quantification, then one immediately has the restriction that only
stratified propositions φ can be coded. Theory suggests that this is not too oner-
ous a restriction: in practice, most reasoning in NFU corresponds to reasoning
in type theory, and it is known that any stratified theorem of an extension of
NFU with stratified axioms has a proof using only stratified formulas.

The quantifiers ∀ and ∃ are best thought of simply as functions to be applied
to abstractions: whne thinking of stratification, the issues for the term (∀x.φ)
are the same as those for the more explicit term (λx.T) = (λx.true) (in Watson
notation, [T] = [true]) that is not equally well covered by thinking of it as
∀(λx.T) (forall @ [T]).

In the development of quantification under Watson we will see two main
themes which interact with each other: one of these is the development of a
limited form of higher-order matching, to support efficiency in the application of
theorems involging abstractions (usually theorems about quantification in this
case-study, of course); the other is the discovery that the stratification algorithm
given in the previous section, though adequate in theory, is too rigid for practical
use and needs further refinement.

The abstraction functions of Watson were originally implemented using three
built-in pseudo-theorems called EVAL, BIND, and UNEVAL. The EVAL pseudo-
theorem is applicable to terms of the form [T]@U and returns T{U/?1}, the
result of replacing ?1 (or, in a context of nested brackets, the appropriate bound
variable of higher index) with U in T. EVAL only applies if [T] is a stratified
abstraction term. We use braces instead of brackets in notation for substitu-
tion because of the special role of brackets in Watson notation (the braces are
not Watson notation themselves); we ignore the details of the renumbering of
bound variables which will occur when substitutions are carried out. The BIND
pseudo-theorem takes a parameter: applying BIND @ U to a term T converts it
to the form [T{?1/U}]@U (if the abstraction term [T{?1/U}] is stratified). The
UNEVAL pseudo-theorem (which was introduced later than the others, as it took

Implementation of an Unusual Higher-order Logic 183

us longer to realize that it was needed) also takes a parameter: applying UNEVAL
@ [T] to [T{U/?1}] yields [T] @ U if [T] is stratified.

Now consider a typical quantification rule, presented equationally: The propo-
sition (∀x.φ ∧ ψ) is logically equivalent to (∀x.φ) ∧ (∀x.ψ).

One might think that this would be expressed by the equational theorem
forall @ [?P & ?Q] = forall @ [?P] & forall @ [?Q]. This is not the case.
The problem is that the free variables ?P and ?Q cannot match expressions that
contain ?1, because ?1 is not meaningful in the top-level context here: as a result,
the given equation only applies when the formulas φ and ψ being coded contain
no instance of x, which is certainly not very satisfactory! An equational theorem
which does express our intention is the following: forall @ [?P@?1 & ?Q@?1]
= forall @ [?P@?1] & forall @ [?Q@?1], in which the possible dependence
of φ and ψ on the bound variable is signified by representing them by expressions
?P@?1 and ?Q@?1 rather than the free variables ?P and ?Q.

Applying this theorem was rather laborious using early versions of the prover.
To prove the rather silly theorem forall @ [?1 = ?1 & ?1 = ?1] = forall @
[?1 = ?1] & forall @ [?1 = ?1] using the theorem above, it was necessary
first to use BIND @ ?1 to rewrite forall @ [?1 = ?1 & ?1 = ?1] to forall @
[[?2 = ?2]@?1 & [?2 = ?2]@?1], then rewrite with the theorem to get forall
@ [[?2 = ?2]@?1] & forall @ [[?2 = ?2]@?1], then rewrite with EVAL to
get forall @ [?1 = ?1] & forall @ [?1 = ?1]. The theorem could not be
applied directly because the terms ?P@?1 and ?Q@?1 did not match the term
?1=?1. The solution is to allow terms ?P@?x to match terms T of different sur-
face forms, by stipulating that ?P would match [T{?1/?x}] in this case, if the
abstraction term is stratified. This also requires a refinement of the definition of
substitution: the result of substituting [T] for the free variable ?P in the con-
text ?P @ ?x needs to be T{?x/?1} rather than [T] @ ?x, if one is to avoid
tedious applications of EVAL. With these changes, the rule forall @ [?P@?1 &
?Q@?1] = forall @ [?P@?1] & forall @ [?Q@?1] rewrites the term forall
@ [?1 = ?1 & ?1 = ?1] to forall @ [?1 = ?1] & forall @ [?1 = ?1] in
one step (and similarly for more realistic examples).

This is a limited form of higher-order matching. The limitation is that only
local information is used to determine matching to function application terms.
The effects of the limitation can be seen with the rewrite (?P @ ?x) & forall
@ [?P @ ?1] = forall @ [?P @ ?1]. The converse of this presents no prob-
lems: if we use forall @ [?P @ ?1] = (?P @ ?x) & forall @ [?P @ ?1] to
rewrite forall @ [?1 = ?1], we get ?x 1 = ?x 1 & forall @ [?P @ ?1] (Wat-
son generates fresh variables when a rewrite introduces a new variable). This con-
verse rewrite can be given a parameter: if we named it REWRITE@?x : forall
@ [?P @ ?1] = (?P @ ?x) & forall @ [?P @ ?1] and rewrite the example
term above with REWRITE @ 3, it will rewrite to 3 = 3 & forall @ [?P @ ?1].
An attempt to rewrite 3 = 3 & forall @ [?P @ ?1] with the theorem (?P @
?x) & forall @ [?P @ ?1] = forall @ [?P @ ?1] will fail: the problem is
that the matching function, which uses only local information to work on terms,
will match ?P to [3=3] when it matches ?P @ ?x to 3 = 3 (because it has no

184 M. R. Holmes

guidance on what to match ?x with, and so abstracts relative to a fresh variable
?x 1) while it correctly matches ?P with ?1 = ?1 on the two occasions when
it matches ?P @ ?1 with ?1 = ?1, since it is given a concrete argument ?1 to
match. These matches are inconsistent.

This can be avoided using the device of parameterized rewrite rules (in effect
solving the higher-order matching problem for this example). To understand this
approach, it is necessary to be aware that Watson supports a kind of program-
ming with rewrite rules ([8] gives a full account). If Rewrite is the name of a
theorem (qua rewrite rule) and T is a term, Rewrite => T is a term, denoting
the same object as the term T. The effect of the prefixed Rewrite is to signal
the intention to rewrite with this rule, which will be carried out by the tactic
interpreter if it is invoked on such a term, or if it generates such a term in the
course of another rewrite.

To solve the problem of rewriting (?P @ ?x) & forall @ [?P @ ?1] to
forall @ [?P @ ?1], given a theorem REWRITE1: (?P @ ?x) & forall @ [?P
@ ?1] = forall @ [?P @ ?1], first prove a theorem REWRITE2 @ ?P: (?P @
?x) & forall @ [?P @ ?1] = forall @ [?P @ ?1]. Note that this “theorem”
is supplied with a parameter. Then prove a theorem REWRITE3: ?U & forall
@ [?P @ ?1] = (REWRITE2 @ ?P) => ?U & forall @ [?P @ ?1]. (This theo-
rem is true because annotations with rewrite rules do not affect the reference of
terms.)

When REWRITE3 is applied to the term 3=3 & forall @ [?1=?1], the free
variable ?U matches 3=3 and the free variable ?P matches [?1=?1] using higher-
order matching. The term is then rewritten to (REWRITE2 @ [?1=?1]) => 3=3
& forall @ [?1=?1]. Now a technical detail of the implementation of parame-
terized rewrite rules comes into play: REWRITE2 @ ?P (called the “format” of the
rule REWRITE2) is matched to the actual parameterized rewrite rule REWRITE2 @
[?1=?1] in the term, and the resulting substitution (of [?1=?1] for ?P) is car-
ried out on the body of the equational theorem REWRITE2 before it is matched
to its target: rewriting (?P @ ?x) & forall @ [?P @ ?1] = forall @ [?P @
?1] with this substitution gives ?x 1=?x 1 & forall @ [?1=?1] = forall @
[?1=?1], and using this equation to rewrite 3=3 & forall @ [?1=?1] of course
gives forall @ [?1=?1]. The powerful move here is the ability to rewrite the
body of a rewrite rule using the match of “formats” before the rewrite is used.

We are aware of very interesting work on more powerful forms of higher-
order matching, as for example in [12] and [14]. We have chosen not to attempt
to implement anything like this. The limited higher-order matching of Watson
is efficient though stupid, and its capabilities can be enhanced as needed using
“rewrite rule programming” as in the example above. It is known, for example,
that full second-order matching is an NP-hard problem (see [2]).

Watson also stipulates that a term [T] @ U matches any term which is
matched by T{U/?1}. This was originally seen to be needed when consider-
ing instantiation of universal hypotheses: the hypothesis forall @ [?1=?1],
for example, can be considered as justifying the rewrite rule [?1=?1] = [true],
which one would like to use to rewrite terms V = V to true regardless of the

Implementation of an Unusual Higher-order Logic 185

value of V. This was originally done with applications of the pseudo-theorem
UNEVAL@[?1=?1] followed by direct application of the rewrite rule and applica-
tions of EVAL; this refinement of matching allows a simpler implementation.

More difficulties with the implementation became evident as soon as mul-
tiple quantifiers were considered. For example, the term representing the per-
fectly sensible formula (∀x.(∃y.x = y)) is forall @ [forsome @ [?1 = ?2]].
This translation is easy: unexpectedly, this term is unstratified! The formula
(∀x.(∃y.x = y)) certainly is stratified, but the connectives and quantifiers are
not term constructors in NFU as they are in Watson. In NFU , types need only
be assigned using considerations local to atomic formulas; in Watson the typing
is driven by the structure of the whole term as follows:

(forall1 @ [(forsome0 @ [(?1−2 = ?2−2)−2]−1)−1]0)0

The failure of stratification can now be seen: the variable ?1 is assigned type
−2, but is also required to have type one lower than the type 0 of the abstraction
term in which it is bound.

In our interpretation of NFU in a synthetic combinatory logic in [5] we
solved this problem by noting that the relative type of a term representing
a truth value can be freely raised or lowered by any constant amount with-
out affecting its value. If T denotes a truth value, then the term (λx.T) =
(λx.true) is an equivalent term in which the relative type of T is lowered by one,
while (ifT then (λx.true)else(λx.false))(u) is an equivalent term in which
the type of T is raised by one. Unfortunately, it would not be a practical so-
lution to require the user of Watson to explicitly raise the relative type of the
subterm forsome @ [?1 = ?2] in the above example, for example by replac-
ing it with ((forsome@[?1=?2])||[true],[false])@0 (the construction with
|| , builds expressions defined by cases).

Instead, we refined the stratification algorithm of Watson to recognize terms
which are “stratifiable” by such methods without having to explicitly carry out
the manipulations. Moreover, the problem can be solved in more generality: that
terms with propositions as values could have their types manipulated in this way
is a special case of a phenomenon which is of theoretical interest in NFU and
related theories, and which we had already predicted would have interest in
applications of stratified λ-calculus (in [6]).

We present some set-theoretical background. The Cantor theorem |A| <
|P(A)| (the cardinality of a set is strictly less than that of its power set) is
not a theorem of NFU . This is not surprising: |A| < |P(A)| is not well-typed
in Russell’s type theory. Define P1(A) as the set of all one-element subsets of
A, and one can recast the theorem as |P1(A)| < |P(A)|. This is well-typed,
and is a theorem of type theory and of NFU , the correct analogue of the stan-
dard Cantor theorem. Of course the standard theorem is obviously false in a
theory with a universal set V : |V | < |P(V)| is absurd. The correct assertion is
|P1(V)| < |P(V)|: the collection P1(V) of all one-element sets is smaller than
the collection P(V) of all sets (which is obviously no larger than the universal
set V , and is smaller in all known models of NFU). Thus the “obvious bijec-

186 M. R. Holmes

tion” {〈x, {x}〉 | x = x} between P1(V) and V (the singleton map) cannot be a
function (note that its definition is not stratified).

A set A satisfying the unstratified equation |A| = |P1(A)| (A is the same
size as the set of its one-element subsets), is said to be cantorian: cantorian
sets satisfy the standard form of Cantor’s theorem. We say that A is strongly
cantorian, which we abbreviate hereinafter s.c., just in case {〈x, {x}〉 | x ∈
A} is a set. Strongly cantorian sets have very convenient properties in relation
to stratification. Let A be a strongly cantorian set, and let k be the function
{〈x, {x}〉 | x ∈ A} and k−1 be its inverse function. Suppose that a is a variable
restricted to A. Then occurrences of a can have their relative type freely raised
and lowered: replacing a with the equivalent term (ιx.x ∈ k(a)) (“the element
of {a}”) raises its type by one; replacing a with the equivalent term k−1({a})
lowers the type of a by one. The types of occurrences of a variable restricted to
a strongly cantorian set can be independently adjusted to restore stratification;
the relative types of such variables can be ignored (it is not the case that the
internal typing of any term belonging to an s.c. set can be ignored; the form of
such a term may force relationships between the types of unrestricted variables).

The class of strongly cantorian sets is closed under all natural type construc-
tions, including the formation of subtypes, cartesian products, and arrow types.
NFU does not prove that any sets other than concrete finite sets are s.c., but the
assumption that the set of natural numbers is s.c. is consistent with NFU (see
[11]) and implies that all data types relevant to computer science will be s.c. sets.
We suggested in [6] that the notion “strongly cantorian set” might be analogous
to “data type” in an implementation of the theory of computer programming
using stratified λ-calculus; practical experience with Watson bears this out.

Our course of action in response to the problem first encountered with nested
quantification was to liberalize the stratification algorithm by allowing the prover
to recognize and exploit the fact that certain terms represent elements of s.c.
sets. We had already considered the need to deal with terms representing objects
of particular sorts and with operations on objects of particular sorts in a system
like Watson whose logic is unsorted. The solution adopted was to use retractions
(functions f such that f(f(x)) = f(x)) as “type labels”. For example, theories of
propositional logic included a unary operator |-, a retraction onto truth values,
mapping true to itself and everything else to false. The theorem (?x = ?y)
= (|- ?x = ?y) expressed the fact that equations are propositions; the fact
that conjunction was a binary operation on booleans with a boolean value was
expressed by the theorem ?x & ?y = |-((|- ?x) & (|- ?y)). One application
of “rewrite rule programming” in Watson, even before the developments now
outlined, was the automatic introduction or elimination of such “type labels” as
needed.

The new doctrine added at this point was that “data types” should be
strongly cantorian. A primitive operator : was chosen to represent the appli-
cation of a retraction with s.c. domain to its argument, with the predeclared ax-
iom ?t : (?t : ?x) = ?t : ?x providing that “type labels” are retractions,
and with a special role in the stratification algorithm, exploiting the strongly

Implementation of an Unusual Higher-order Logic 187

cantorian character of its range. The example term forall @ [forsome @ [?1
= ?2]] became stratifiable with the insertion of a type label thus: forall @
[bool: forsome @ [?1 = ?2]].

We did not want to always have to insert explicit type labels to restore
stratification (though even this was a great improvement over the original sit-
uation). So Watson was given the ability to recognize operators or functions
with strongly cantorian “input” or “output”. For example the term ?x = ?y has
“strongly cantorian output”: the value of this term is s.c., so the relative type of
a subterm of this shape can be raised or lowered freely. The term ?x & ?y has
the stronger property of “strongly cantorian input”: both of its arguments are
“restricted” to s.c. sets (non-boolean values of the arguments are retracted into
the boolean type before the conjunction is carried out), and so the relative types
of subterms T and U in a subterm T & U can be raised or lowered independently
of one another. The prover requires the user to exhibit a theorem of an appro-
priate form in order to register an operator as having one of these properties.
Once these features are installed, the term forall @ [forsome @ [?1 = ?2]]
is recognized as stratified without any need for explicit type annotation after the
user registers forsome as having “strongly cantorian output” using the theorem
forsome @ ?P = bool: forsome @ ?P as witness.

The extended stratification algorithm uses a richer data type to represent
relative types (which are simply integers in the original algorithm). Types are
either exact integer values n or “floating” types A + n where A is a variable
representing an unknown displacement of the type. Stratifications are either
finite functions from natural numbers (qua indices of bound variables) to relative
types or the error value, as before.

The merge algorithm can sometimes return a non-error value when the union
of its finite function arguments is not a function: it will attempt to convert the
union to a function by making appropriate assignments to the variables repre-
senting unknown displacements: for example, if the same variable is assigned
types A + 2 and 3 by a stratification, the variable A will be assigned the value
1 (m + 1 will replace A + m in the range of the union of the functions); if the
conflict is between values A + 3 and B + 5, either A + (m − 2) will replace all
values B + m or B + (m + 2) will replace all values A + m.

We describe the stratifications of terms T : U with explicit type labels (the
handling of appropriate subterms of infix terms built with operators registered
as having strongly cantorian input or output is similar: these can be understood
as having implicit type labels): the stratification of T : U will be Error if the
stratification of T is anything but the empty function (this is satisfied if T is
constant, but also permits limited forms of dependence of T on variables), and
will otherwise be obtained from the stratification of U in the following way: the
basic idea is that all constant types n in the stratification of U are replaced by
types C + n where C is a fresh variable; but if there is just one variable with an
exact type in U the typing of that variable is simply omitted (no information is
conveyed by a relative type C + n unless some other variable has a type C + m,
allowing us to determine the exact displacement between two types).

188 M. R. Holmes

The full stratification algorithm of NFU for terms translating formulas is
recovered, once all logical operations have been declared as having strongly can-
torian input and the equality and membership predicates have been declared as
having strongly cantorian output. This approach solves problems not only in the
implementation of quantification in higher order logic, but in higher-order logic
proper: for example, in a theory of program semantics we were able to construct
function types while essentially ignoring stratification restrictions, the syntactic
price being the need to occasionally attach type labels to bound variables. The
type of states S = A → V in our theory was inhabited by functions from a
type of addresses A to a type of values V ; the type of expressions in the theory
was (S → V) = ((A → V) → V). Early attempts to develop this theory were
impeded by stratification failures (note that V appears at two different rela-
tive types in this type definition), but making the base types A and V strongly
cantorian and proving that important operations have strongly cantorian input
and/or output allows reasoning about these types in a natural way.

The final problem we consider, which combines the issues of higher-order
matching and stratification, is the treatment of higher-order matching where
more than one variable is involved.

The canonical problem along these lines is the implementation of the logi-
cal equivalence (∀x.(∀y.φ)) ≡ (∀y.(∀x.φ)). One might suppose by analogy with
the handling of single quantifiers above that this would be presented as forall @
[forall @ [(?P @ ?1) @ ?2]] = forall @ [forall @ [(?P @ ?2) @ ?1]],
with the intention that the term (?P @ ?1) @ ?2 would match arbitrary terms
T coding φ.

This approach doesn’t work. One problem is that forall @ [forall @ [(?P
@ ?2) @ ?1]] isn’t stratified: even with the improvements to stratification de-
scribed above, the addition of a type label (giving forall @ [forall @ [bool:
(?P @ ?2) @ ?1]]; equally good is
forall @ [forall @ [|- (?P @ ?2) @ ?1]], where |- is the proposition la-
bel described above, if it is registered as having strongly cantorian output) is
needed for it to be possible to sensibly type ?2.

A more profound problem is that (?P @ ?1) @ ?2 isn’t suitable to match
general Watson expressions: its typing is rigid, dictating that ?1 has type one
higher than ?2. This typing problem is the reason why the technique of “curry-
ing” usually used in combinatory logic and λ-calculus for representing functions
of several variables (using f(x)(y) to represent the application of a function to
two arguments x and y and regarding (λxy.T) as meaning (λx.(λy.T))) is not
appropriate in Watson: in stratified λ-calculus we write the generic application of
a function of two variables as f(x, y) (the usual abuse of notation for f(〈x, y〉)),
and indeed write application terms in the traditional form f(x) rather than in
the form (fx) with left grouping which is so convenient for currying; moreover,
the defining equation for our (λxy.T) is (λxy.T)(x, y) = T .

The typical situation is that in which ?1 and ?2 have the same relative type.
In this case the theorem of quantifier switching can be implemented as forall
@ [forall @ [?P @ (?1,?2)]] = forall @ [forall @ [?P @ (?2,?1)]].

Implementation of an Unusual Higher-order Logic 189

If one matches ?P @ T,U to a term V, the variable ?P will match
[T{p1@?1;p2@?1/U;V}], if this is stratified: for example, ?P @ (?x,?y) will
match ?y + ?x, with ?P matching the function [p2@?1 + p1@?1]. The pro-
jection functions p1 and p2 are automatically applied in the course of substi-
tution so that laborious eliminations of automatically generated projections are
not needed. With these features, rewriting forall@[forall@[?1+?2 = ?2+?1]]
with the quantifier switching theorem of this paragraph gives
forall@[forall@[?2+?1 = ?1+?2]] in one step.

It is possible to prove a sequence of different quantifier switching theorems
which will work for each possible value of the difference in types between ?1
and ?2 while preserving complete respect for stratification, though the forms of
higher-order patterns used to match terms with various differences in type are
rather esoteric. This is not really an ideal situation, and it is in fact completely
solved in the current version of Watson. The general solution goes beyond the
scope of this paper (it is more fully described in [9]): unstratified abstraction
terms are admitted into the language, and a special function application operator
@! is admitted with the completely general rule [T] @! U = T{U/?1} for all
abstraction terms [T] which Watson accepts as well-formed (which includes all
terms built without use of the special application operator @! and a limited
class of terms built with applications of that operator which are “inessential”
in a suitable sense). This amounts to augmenting our logic with a theory of
“proper class functions”, and is obviously logically dangerous; the extension
is formally described and shown to be safe in [9]. The problem of theorems
like quantifier switching can then be solved by using curried terms in @! as
higher order patterns: forall @ [forall @ [(?P @! ?1) @! ?2]] = forall
@ [forall @ [(?P @! ?2) @! ?1]] turns out to be an all-purpose quantifier
switching theorem.

This extension of the logic has the further effect that the expressive power
of the Watson logic becomes the same as that of NFU : the ability to represent
and manipulate unstratified abstraction terms has the effect of allowing the
expression of unstratified quantification and standard first-order reasoning about
unstratified formulas. There are very interesting unstratified axioms which are
useful extensions of NFU (see [10] or [3]); one of them (the assertion that the
natural numbers are s.c.) is an official part of the logic). Some of these are
expressible under Watson without unstratified abstraction (because the implicit
quantification over free variables in Watson theorems can be unstratified), but
the full range of unstratified axioms (and some things which are formally infinite
axiom schemes) become expressible in the full Watson logic.

5 Relation to Earlier Work

This paper tries to give a more accessible account of the underlying logic (as a
set theory) than was given in [7].

A defect of our survey [9] of the logic of Watson noted by a referee was
that in its attempt to give an account of the entire logic of Watson (including

190 M. R. Holmes

its equational/rewriting aspects, its logic of case expressions, and the imple-
mentation of first-order logic using unstratified abstraction) the account of the
higher-order logic suffered; here we try to give more of the flavor of the work
with the higher-order logic.

We rely on earlier mathematical work on the implementation of the logic of
quantification in an equational higher-order logic to the extent that we never
discuss the details of how this is done at all! The details may be seen, for exam-
ple, in [1] or [4]. It should be noted that the implementation of quantification is
here used as a case study of the use of the higher-order logic; it is now possible to
implement first-order logic in the Watson logic without any attention to strati-
fication at all, but the flexibility added to the type system in the course of this
development remains critical for reasoning about functions (as in the example
of a theory of program semantics briefly mentioned above).

References

1. Peter Andrews, An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof, Academic Press, Orlando, 1986.

2. H. Comon and Y. Jurski, “Higher-order matching and tree automata” in Proc. An-
nual Conf. of the European Assoc. for Computer Science Logic, Aarhus, Denmark,
Aug. 1997 , LNCS vol 1414, Springer-Verlag 1998, pp. 157-176.

3. T. E. Forster, Set theory with a universal set, an exploration of an untyped universe,
2nd. ed., Oxford logic guides, no. 31, OUP, 1995.

4. David Gries and Fred B. Schneider, A Logical Approach to Discrete Math, Springer-
Verlag, 1993.

5. M. Randall Holmes, “Systems of combinatory logic related to Quine’s ‘New Foun-
dations’ ”, Annals of Pure and Applied Logic, 53 (1991), pp. 103-33.

6. M. Randall Holmes, “The set theoretical program of Quine succeeded (but nobody
noticed)”, Modern Logic, vol. 4 (1994), pp. 1-47.

7. M. Randall Holmes, “Untyped λ-calculus with relative typing”, in Typed Lambda-
Calculi and Applications (proceedings of TLCA ’95), Springer, 1995, pp. 235-48.

8. M. Randall Holmes, “The Watson Theorem Prover”, to appear in the Journal of
Automated Reasoning . The on-line documentation of the prover accessible from
http://math.boisestate.edu/∼holmes/proverpage.html incorporates an early
draft of this paper.

9. M. Randall Holmes, “A strong and mechanizable grand logic”, in Theorem Proving
in Higher Order Logics: 13th International Conference, TPHOLs 2000”, Lecture
Notes in Computer Science, vol. 1869, Springer-Verlag, 2000.

10. M. Randall Holmes, Elementary Set Theory with a Universal Set (Cahiers du Cen-
tre de Logique, vol. 10), Academia-Bruylant, Louvain-la-Neuve, 1998.

11. Ronald Bjorn Jensen, “On the consistency of a slight (?) modification of Quine’s
‘New Foundations’ ”, Synthese, 19 (1969), pp. 250-63.

12. Dale Miller, “Unification under a mixed prefix”, J. Symbolic Computation, vol. 11
(1992), pp. 1-38.

13. W. V. O. Quine, “New Foundations for Mathematical Logic”, American Mathe-
matical Monthly , 44 (1937), pp. 70-80.

14. Jan Springintveld, “Third-order matching in the polymorphic lambda-calculus”,
in G. Dowek, J. Heering, K. Meinke, and B. Möller, eds. Higher-Order Algebra,
Logic, and Term Rewriting , LNCS vol. 1074, Springer-Verlag, 1995.

