
Representing Component States
in Higher-Order Logic

Sidi O. Ehmety and Lawrence C. Paulson

Computer Laboratory
University of Cambridge

Cambridge CB2 3QG, England
{soe20,lcp}@cl.cam.ac.uk

Abstract. Component states can be formalized in higher-order logic as
(1) functions from variables to values and (2) records, among other pos-
sibilities. Variable-to-value maps are natural, but they yield weak typing
and restrict the user to a predefined value space. Record types define
component signatures and properties need to be transferred between the
various signatures. The method yields strong typing, but transferring
properties requires an elaborate theory and not all properties can be
transferred.

The paper reports experiments with a third method: the state is rep-
resented by an abstract type. The method is described and contrasted
with respect to the others.

1 Introduction

Compositional reasoning is becoming increasingly popular. The idea of deriving
a system’s properties from those of its components is attractive.

This paper concerns compositional models of concurrent systems within the
programming formalism UNITY [8, 9]. These theories have been supported by
various tools. Heyd and Crégut [6], Vos [12], and Paulson [11] implement UNITY
using the proof tools HOL, Coq and Isabelle/HOL, respectively. The resulting
systems include all relevant definitions and basic laws of compositional reasoning
as well as some illustrative examples.

A common point to these mechanizations is that most of the effort has been
put on codifying the theory itself. Others aspects, such as usability and applica-
bility, have been secondary considerations.

In their mechanization, Heyd and Crégut are mainly concerned by the ap-
plication of the so-called substitution axiom, which is unsound in compositional
proofs. For this purpose they introduce a notion of context. They obtain strong
versions of UNITY properties upon which the axiom can safely be applied. How-
ever, while in early days the axiom was considered as an obstacle to composi-
tional reasoning, today many proofs are being done without it: that the axiom
can simply be avoided.



152 S. Ehmety, L. Paulson

In her mechanization, Vos is more aware of the end user. She defines a whole
new syntax in order to hide implementation details and to ease the use of the re-
sulting tool for the end users. However her representation of states is potentially
restrictive.

Our work is a continuation of Paulson’s mechanization which implements the
recent Chandy and Sanders compositional theory [1, 2] on the top of UNITY. In
his mechanization, Paulson leaves the state unspecified: the type of components
is polymorphic in the state ’a program. The choice of representing states is
delayed until component specifications and is left to the end user.

Using Isabelle/UNITY, we [5] have successfully mechanized two examples [3]
illustrating universal and existential composition. A universal property is one
that holds in a system provided all components have the property. An existen-
tial property is one that holds in a system provided some components have the
property.

2 Representing Component States

The state of a program is an assignment from values to the program’s variables.
Most UNITY proofs are done by hand and this notion of state, among many

other things, is implicit. However there are two main common considerations
that most authors take into account:

– Strong typing: each variable has a declared type and is only assigned values
of that type.

– Uniformity of state space: when composing two programs F and G the state
type is common to both components, as well as their composition, F tG. In
others words the state type is considered to be common to all components.

In addition, variables names have global scope. Furthermore, some authors
quantify over variables, as in following specification for a component with two
variables x and y:

For all variables v other than x and y, ∀k. stable (v = k)

which expresses that component does not modify variables other than its own.
A similar quantification can express that a variable is local. Quantification over
variables can concisely express specifications where many variables remain un-
changed. Note that there is a clear distinction between variables and their values.

Is there a representation of states that combines strong typing and uniformity,
while allowing quantification over variables? There is little literature on state
representation in higher-order logic. In her PhD thesis [12], Vos discusses two
different representations: tuples and variable-to-value maps. Vos rightly dismisses
tuples because they identify variables by their position in the tuple rather than
by name. Most authors represent the state as a function from variables to values.
As Paulson has noted [10], this representation is uniform but restricts the user to
the built-in type of values. If the value type is a recursive disjoint sum, then its



Representing Component States in Higher-Order Logic 153

constructor and destructor functions will obscure specifications. Vos gets around
that problem by defining a concrete syntax for expressions built over the disjoint
sum. A variable-to-value map gives all variables the same type, yielding a weakly
typed formalism; well-typing has to be expressed as an invariant that must be
proved and used explicitly.

Paulson [10] suggested using record types to define component signatures. It
permits a variety of state types rather than requiring a uniform one. It provides
a means of transferring properties from one type to another. The mechanization
of a large example proposed by Chandy and Mandy [4] has shown that unless
the state type is common to all components, the need to reconcile the differences
between the various types can cause grave difficulties.

Heyd and Crégut, in their mechanization using the Coq system, represent
a state by a dependent function from variables to types. The type of variables
is defined by enumeration and the type of states can map each variable to a
distinct type. The representation preserves strong typing but not the uniformity
of state space. Furthermore, there is a need for all logical operations to be lifted
into predicate states.

A last method for representing states is used by some authors in the so-
called coalgebraic formalization of object-oriented classes [7]. In this method the
state is modelled as a black-box. Inspectors (or methods) are provided to obtain
information about the state. Inspectors also allow to change the state. As far as
we know this method has never been investigated by the UNITY community.

Next we describe this approach in Isabelle/HOL.

3 State as abstract type

This method has first been used by Merz in his mechanization of the TLA
formalism in Isabelle/HOL. However it has never been documented. So by this
description we hope to clarify some characteristics of this interesting method as
well as to provoke a discussion about it in the HOL community.

Now let us describe the method. Assume an abstract type state:

typedecl state

Here command typedecl introduces a new type but without defining it. Thus
we know nothing about the type other than it exists.

Now variables can be defined as inspector functions over the type state.
One merely has to define as many inspector functions as necessary. For example
below we declare two state inspectors, namely x and y:

consts x :: state ⇒ nat
y :: state ⇒ int

The inspector x takes its values over the natural numbers. It specifies a variable
of type nat. The inspector y defines a variable of type int.



154 S. Ehmety, L. Paulson

Clearly in this way strong typing is preserved: the result types of variables
are precisely specified. Uniformity is also preserved: all specifications share the
global type state.

However we still need an axiom in order to be able to prove the enabledness
of component actions. Enabledness is essential in order to prove that a property
is transient, which in turn is needed to prove liveness.

For illustration, let us consider a component with just one variable, namely
the variable x previously declared. The component has only one action, act,
given by the following relation:

constdefs act :: state×state
act ≡ {(s, s′) | x(s′) = x(s) + 1}

Command constdefs defines the constant act to be the binary relation over
state given (by comprehension) as a set of pairs of states. The ≡ notation
means equality by definition. Thus act specifies the assignment x := x + 1.
Clearly this action is always enabled, but to prove this claim one has to show
that

∃ s′. x(s′) = x(s) + 1,

for any state s.
More generally, to prove the enabledness of the action act we introduce the

following axiom: for any valid value for the variable x there exists a state s that
assigns that value to x. Formally,

∀n. ∃ s. x(s) = n

Clearly the axiom is sound. HOL strong typing indicates that n is a valid value
for x, that is, n is a natural number. Now we can prove the enabledness of the
action act by applying the axiom taking n = x(s) + 1.

The axiom is equivalent to

range(x) = UNIV. (1)

Here UNIV is a polymorphic constant denoting the universal set in Isabelle/HOL.
Extending axiomatization (1) to many variables is a bit tricky. In his mech-

anization of TLA, Merz introduces three axioms for this purpose. Discussions
with Merz led to the simpler definition, using the pair function:

basevars(x1, x2, . . . , xn) ≡ range(x1 ⊕ x2 ⊕ . . .⊕ xn) = UNIV (2)

Here x1, x2, . . . , xn, n > 0, are state functions (variables). The ⊕ symbol is used
as an infix notation for the pair function: x⊕ y ≡ λs.(x(s), y(s)).

Definition (2) generalizes axiom (1) to tuples. Thus one merely has to declare
variables of a component using basevars.

Intuitively, a basevars declaration asserts that for any valid values v1, . . . , vn

for the variables x1, . . . , xn, there exists a state that assigns n1 to x1, . . . , and



Representing Component States in Higher-Order Logic 155

vn to xn if and only if there exists a state that assigns the tuple (v1, . . . , vn) to
the pair function x1 ⊕ . . .⊕ xn:

∀v1, . . . , vn.

(∃ s. x1(s) = v1 ∧ . . . ∧ xn(s) = vn) ↔ (∃ s. (x1 ⊕ . . .⊕ xn)(s) = (v1, . . . , vn))

The → implication is trivial. The soundness of the ← implication expresses
an essential property of variables: x1, . . . , xn must be independent views of the
component states. There should be no dependence between them. For illustration
let us consider a trivial case of dependence: suppose that the user mistakenly
asserts the declaration basevars(x, x). Thus we can prove that there exists a
state in which the pair function x ⊕ x has the value (0, 1). However there can
never be a state s that assigns simultaneously 0 and 1 to x, since in such a state
we would have x(s) = 0 ∧ x(s) = 1, which would lead to the equality 0 = 1!

Furthermore, a basevars declaration should list just the variables of the
component, no more, no less. Declaring more variables asserts an axiom that is
stronger than necessary. For example declaring basevars(x,y) for a component
with only one variable x, would require showing ∃s.x(s) = m∧ y(s) = n when it
is only needed to prove ∃s.x(s) = m. Declaring fewer variables asserts an axiom
that is too weak to prove all possible enabledness properties.

4 An Example: the Counter System

Let us now illustrate this method with a simple example taken from Charpentier
and Chandy [3]. Consider an I-indexed family of components sharing a global
variable: a counter C. Each component i also has a local counter ci and performs
a certain action a. Components increase their local counters and the global
counter by one each time they perform the action. Clearly, each ci records the
number of actions performed by component i and C always equals the sum of
the ci.

In other work [5], we have described the mechanization of this example. Here
we will only review the relevant part to our illustration.

The formal specification of component i [3] consists of three safety properties:

initially ci = 0 ∧ C = 0 (3)

∀k. stable C = ci + k (4)

∀k. stable (v = k) for all variables v, other than ci and C (5)

Additionally, variable ci is declared to be local to component i:

local ci

Property (3) fixes the initial values of both C and ci at zero. Property (4)
means that component i always increases C and ci by the same value. Property



156 S. Ehmety, L. Paulson

(5) states that component i changes no variables other than ci and C. This
property ensures that components are compatible: the components can safely be
composed because they respect each others’ local variables.

The variable declaration is formalized in two steps. First, we declare the
variables’ types:

consts C :: state ⇒ int
c :: nat ⇒ state ⇒ int

The family of variables {ci}i∈I could be formalized as c :: state⇒ nat⇒ int
instead.

Second, we introduce the basevars assertion:

rules basevars(c(i), C)

Command rules adds the assertion as an axiom. Thus we assert that c i and C
are the only variables of the component i and also that c i and C are independent
views of the state.

In this example, the basevars assertion is not required because we are not
going to prove transient properties. But for methodology, we always introduce it
as part of a variable declaration. We can even extend the Isabelle/HOL theory
syntax to accept variable declarations for UNITY programs. This new theory
section could check that the listed variables are independent views of the state.

Having declared the component’s variables, we are now able to formalize its
properties. The Isabelle versions of properties (3) and (4) for a component i are
given below:

component i ∈ initially {s | (c i)(s) = 0 ∧ C(s) = 0}

component i ∈ stable {s | C(s) = (c i)(s) + k}
Note that state predicates are represented as sets of states. A program property
is represented as the set of programs satisfying that property.

Property (5), however, can not be expressed as it appears above. The property
uses universal quantification over variables. We do not have a type of all variables
and therefore cannot express a such quantification.

As we show in previous work [5], this axiom, which expresses auxiliary condi-
tions over variables, is stronger than necessary. (It does not matter which state
representation is used.) Instead of that axiom, we propose the following general
one, for any program F :

F ok (component i) → F ∈ stable{s | (c i)(s) = k}
Here, F ok G means that components F and G are compatible, which among
other things implies they respect each others’ local variables. This specification is
more abstract than the original one. A drawback is that proofs become cluttered
by compatibility assumptions. We would greatly prefer to be able to quantify
over variables.

Had we instead represented states by variable-to-value maps, we could have
defined the action act of component i using function update:



Representing Component States in Higher-Order Logic 157

constdefs act i ≡ {(s, s′) | s′ = s(c i := s(c i) + 1, C := s(C) + 1)}.
Here variables c i and C would be not inspector functions but simply names,
declared for example as a disjoint sum:

datatype name = c(nat) | C.
And states would be functions from name to the values space (here the type int).
To inspect the value of a variable, function application is used but the other way
around. For example, s(C) returns the value of the variable C in map s. The
notation s(c i := s(c i) + 1, C := s(C) + 1) specifies the map obtained from s by
simultaneously changing the values of variables c i and C to be one more their
previous values. From this definition of act i, we can prove the required prop-
erties. Had we instead represented states by records, we could have proceeded
similarly, using record updates.

The lack of an update notation (whether for records or maps) is a major
drawback of the abstract state type approach. Consider a program with three
variables, x, y and z. Suppose we want to express an action that only updates
the variable x. If we have an update notation, then the final state is simply
s(x := v). With abstract state method, we must write

x(s′) = v ∧ y(s′) = y(s) ∧ z(s′) = z(s)

In other words, we have to define the values of all variables in the final state,
including those that remain unchanged. With even ten variables, the notation
becomes intolerable. This drawback would be avoided if we could express uni-
versal quantification, for we could then say that all variables other than x retain
their original values.

5 Conclusion

In this paper we have discussed several methods for representing component
states. We report experiments with a new representation, with the state as an
abstract type. It has two advantages: uniformity and strong typing. Had this
method permitted defining states by updating a previous state, it would certainly
be the best of all. We do not see a way to do so.

In absence of this feature, variable-to-value maps seem worth reconsidering.
To avoid the drawbacks of disjoint sum, we have started to mechanize UNITY
in ZF set theory. ZF’s formalization of the cumulative hierarchy (sets of the
form Vα) provides huge value spaces. New types can be added by extension.
Constructor and destructor functions are avoided. The main drawback of this
approach will be weak typing; type-checking is done using invariants.

Acknowledgements

Thanks to the U.K.’s Engineering and Physical Sciences Research Council, who
funded this research: grant GR/M 75440, ‘Compositional Proofs of Concurrent
Programs’.



158 S. Ehmety, L. Paulson

References

1. K. Mani Chandy and Beverly A. Sanders. Predicate transformers for reasoning
about concurrent computation. Science of Computer Programming, 24:129–148,
1995.

2. K. Mani Chandy and Beverly A. Sanders. Reasoning about program composition.
Technical Report 2000-003, CISE, University of Florida, 2000. available via http:

//www.cise.ufl.edu/~sanders/pubs/composition.ps.
3. Michel Charpentier and K. Mani Chandy. Examples of program composition il-

lustrating the use of universal properties. In José Rolim, editor, Parallel and
Distributed Processing, LNCS 1586, pages 1215–1227, 1999.

4. Michel Charpentier and K. Mani Chandy. Towards a compositional approach to
the design and verification of distributed systems. In J. M. Wing, J. Woodcock,
and J. Davies, editors, World Congress on Formal Methods in the Development of
Computing Systems (FM’99), LNCS 1708, pages 570–589. Springer, 1999.

5. S. Ehmety and L. Paulson. Program composition in Isabelle/UNITY. 2001. sub-
mitted for publication.

6. Barbara Heyd and Pierre Crégut. A modular coding of unity in coq. In J. von
Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’96, LNCS 1125, pages 251–266. Springer, 1996.

7. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–259, 1997.

8. Jayadev Misra. A logic for concurrent programming: Progress. Journal of
Computer and Software Engineering, 3(2):273–300, 1995. Also at URL ftp:

//ftp.cs.utexas.edu/pub/psp/unity/new_unity/progress.ps.Z.
9. Jayadev Misra. A logic for concurrent programming: Safety. Journal of Com-

puter and Software Engineering, 3(2):239–272, 1995. Also at URL ftp://ftp.cs.

utexas.edu/pub/psp/unity/new_unity/safety.ps.Z.
10. Lawrence C. Paulson. Mechanizing a theory of program composition for UNITY.

ACM Transactions on Computational Logic. in press.
11. Lawrence C. Paulson. Mechanizing UNITY in Isabelle. ACM Transactions on

Computational Logic, 1(1):3–32, 2000.
12. Tanja E. J. Vos. UNITY in Diversity, a Stratified Approach to the Verification of

Distributed Algorithms. PhD thesis, Utrecht University, 1999.


