
A Lost Proof

Christoph Benzmüller1 and Manfred Kerber2

1 Fachrichtung Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany

chris@ags.uni-sb.de
2 School of Computer Science

The University of Birmingham, Birmingham B15 2TT, England
M.Kerber@cs.bham.ac.uk

Abstract. We re-investigate a proof example presented by George Boo-
los which perspicuously illustrates Gödel’s argument for the potentially
drastic increase of proof-lengths in formal systems when carrying through
the argument at too low a level. More concretely, restricting the order
of the logic in which the proof is carried through to the order of the
logic in which the problem is formulated in the first place can result in
unmanageable long proofs, although there are short proofs in a logic of
higher order.

Our motivation in this paper is of practical nature and its aim is to sketch
the implications of this example to current technology in automated
theorem proving, to point to related questions about the foundational
character of type theory (without explicit comprehension axioms) for
mathematics, and to work out some challenging aspects with regard to
the automation of this proof – which, as we belief, nicely illustrates the
discrepancy between the creativity and intuition required in mathematics
and the limitations of state of the art theorem provers.

1 Introduction

The art of general purpose automated theorem proving has been best devel-
oped for first-order logic. State of the art systems like Otter or Spass are
very powerful and can solve many problems of large collections of problems
(see http://www.cs.jcu.edu.au/~tptp/TPTP). A particular highlight of the
success of first-order theorem provers was the machine-generated proof of the
Robbins problem [McC97]. While there are problems which are inherently of a
higher-order nature and for which mere first-order mechanisms seem not to be
appropriate (like diagonalisation proofs) surprisingly even for first-order prob-
lems to stay in first-order logic for the proof search may not be a good idea in
general. Boolos gives a first-order example (actually it is a parameterised class
of examples) that clearly sketches the limitations of first-order logic. Since there
are complete calculi for first-order logic there is a first-order proof for Boolos’
problem, but the proof is so long that it is intractable in first-order logic. Actu-
ally, it is easy to see that any bound on the proof length can be transgressed in



A Lost Proof 41

first-order logic, while in higher-order logic there is a short proof which can be
summarised in one page.

Higher-order logic allows quantification over function and predicate variables
and thus provides a far more expressive language than first-order logic. It was
Bertrand Russell [Rus02,Rus03] who first pointed out in 1902 that in connection
with the unrestricted comprehension principles1 this may allow for paradoxes.2

The most prominent example is the set of all non-self-containing sets (also called
Russell’s paradox ). As a possible solution Russell suggested a few years later
in [Rus08] a theory of types as a basis for the formalisation of mathematics that
differentiates between objects and sets (or functions) consisting of these kinds of
objects. This idea was also taken up by Alonzo Church in 1940, who introduced
a formulation of type theory [Chu40], also called simple theory of types, based on
Russell’s ideas which is taken as a basis formalism in many modern higher-order
theorem provers. Church’s lambda calculus and his theory of types also opened
the door for the propositions as types idea and constructive type theory.

Tps [ABB00,ABI+96], Hol [Gor85], Pvs [ORS92], Ωmega [BCF+97],
λCLAM [RSG98], Leo [BK98b] are interactive and automated higher-order
provers based on the simple theory of types. Some prominent provers work-
ing for constructive type theory are Nuprl [CAB+86], Coq [CCF+95], and
Lego [LP92].

Automating proof search in higher-order logic is a very challenging enter-
prise, such that the above systems all provide facilities to combine interaction
with automation. The idea is that the interactive human provides the crucial
proof steps while simple subgoals are handled automatically by the prover. Of
course, many non-trivial proofs can be already automated in higher-order logic
and the most impressive record in this sense is given by the theorems proven au-
tomatically with Tps [ABB00,ABI+96]. A well known and very simple example
illustrating the expressiveness and elegance of automated higher order theorem
proving is Cantor’s theorem, where the diagonalisation argument, in form of a λ-
term, is synthesised by higher-order unification. For further and more impressive
examples we refer to [ABI+96].

However, as we will discuss below Boolos’ example perspicuously demon-
strates the limitations of current first-order and higher-order theorem proving
technology. As we will illustrate, with current technology it is not possible to
find his proof automatically, even worse, automation seems very far out of reach.
Let’s first give a high-level description why this is so. Firstly, Boolos’ proofs
need comprehension principles to be available and it employs different complex
instances of them. It is important to note here that theorem provers based on
Church’s theory of types typically assume that the comprehension principles can
be completely avoided due to the power of higher-order unification and the ex-
istence of λ-terms. First-order theorem provers use no comprehension principle

1 These principles assure the existence of certain functions, we will come back to them
in Subsection 2.1.

2 Paradoxes occur equally in first-order axiomatisations of set theory with unrestricted
comprehension principles.



42 C. Benzmüller, M. Kerber

nor typically any other definition principle to introduce new concepts. Secondly,
the particular instances of the comprehension axioms cannot be determined by
higher-order unification but are so-called Eureka-steps which have to be guessed.
However the required instantiations here are so complex that it is unrealistic to
assume that they can be guessed, for instance, by blindly applying the prim-
itive substitution principle [ABI+96], by splitting rules [Hue72,Hue73], or by
concisely representing them so that new ones can be generated during the proof
search [Ker94b]. Here it is where human intuition and creativity comes into play,
and the question arises how this kind of creativity can be realised and mirrored
in a theorem prover.

In the following we concentrate on the classical notion of higher-order logic
and, in particular, on the simple theory of types, that is, a classical higher-order
logic based on Church’s simply typed λ-calculus [Chu40]. For an introduction to
the pure simply typed λ-calculus we refer to [Bar84].

Even though our viewpoint here is from classical higher-order logic the prob-
lem is more general and applies to constructive type theory [ML84] and other
approaches as well.

2 Automating Higher-Order Proof Search

The automation of the simple theory of types was pioneered by the resolution
based methods discussed in [And71,Hue72,JP72]. The authors introduce for-
mal derivation systems and discuss soundness and completeness with respect to
Henkin semantics [Hen50], respectively general models [And72a,And72b]. Huet
combined his constrained resolution approach with a higher-order pre-unification
algorithm [Hue75] which avoids guessing aspects of full higher-order unification.
More recent approaches are discussed in [Wol93,BK98a] and a comparison of
these approaches is provided by [Ben01].

In the rest of this section, we briefly discuss some specifics of theorem proving
in higher-order logic.

2.1 Comprehension

The λ-binding construct in combination with the λ-conversion rules in the simple
theory of types have the effect that the type restricted comprehension axioms
become derivable (see also [And86, Chapter 5, p. 159]). The comprehension
axioms are instances of the following axiom schema

∃Nαn→β ∀zn N(z1, . . . , zn) = Bβ

Here B stands for an arbitrary term such that the variable N does not occur free
in it. The intention of the comprehension axioms is to guarantee for each expres-
sion B the existence of the functions (or sets) referred by Nαn→β . For instance,
if β is the type o of truth values the comprehension principle asserts that for any
respective formula B there exists a set N (referred to by the variable N) which



A Lost Proof 43

contains exactly all those n-tuples for which B evaluates to true. The strength of
the λ-notation lies in the fact that the required sets and functions N can easily
be directly described by the term λzn B, so that the implicit requirement that
each term in the simple theory of types has a denotation, already ensures their
existence.

The theorem proving approaches from above as well as the systems mentioned
in the introduction therefore avoid the infinitely many comprehension axioms
altogether.

2.2 Primitive Substitution

In higher-order proof search some set variables may have to be instantiated
with complex terms which cannot be synthesised by higher-order unification.
Simple examples illustrating this problem are ∃xo x or ∃pι→o ∀yι ¬p(y). In a
resolution approach, for instance, the second formula leads to an initial unit
clause p(Y ), where p is a free set variable and Y a Skolem term for y. There
is no further partner clause with a complementary literal available and thus no
resolution step is possible. However, when instantiating the set variable p with
the (complementary) set λx ¬p(x) leading to a second clause ¬p(Y ), then a proof
can be immediately constructed. Note that this proof in some sense mirrors an
initial instantiation of set variable p by a term λx p(x)∧¬p(x) denoting the empty
set. Unfortunately this set description cannot be synthesised by unification in the
context. An example which requires more complex instantiations is X5310 from
the Tps library, which is discussed in detail in [ABI+96, pp.333-335]. There, for
instance, an instantiation λpβ→oλyβ ∃xβ p(x) → p(y) is employed.

In Huet’s resolution approach the splitting rules address this problem, which
are replaced in Andrews’ work [And89] by the more elegant primitive substi-
tution principle. Splitting or primitive substitution blindly instantiates free set
variables at literal head positions with a most general binding (partial binding)
that imitates a logical connective, that is, with a most general formula that intro-
duces a logical connective as head. For instance, the set of most general bindings
for head variable p of the literal p(Y ) from above is p ←− λz ¬b1(z), p ←−
λz b2(z) ∨ b3(z), p ←− λz ∀wβ b4(z, w) where b1,2,3

ι→o and b4
ι→(β→o) are new free

head variables. Since there are infinitely many universal quantifiers in the sim-
ple theory of types (one for each type β) splitting and primitive substitution are
infinitely branching. And as new free predicate variables are introduced they are
recursively applicable to the results of their application. From an abstract point
of view they realise a blind enumeration of all formula schemes in the Herbrand
universe.

Clearly an unrestricted blind enumeration in this sense is practically infeasi-
ble. [ABI+96] therefore explains how this problem is handled in the Tps prover,
which instead of a blind enumeration works with some selectively chosen in-
stances.



44 C. Benzmüller, M. Kerber

2.3 Extensionality

Another source of blind search in higher-order which is in contrast to compre-
hension and primitive substitution less relevant for this paper is extensionality
reasoning. The (type parameterised) functional extensionality principles

∀mα→β ∀nα→β m = n ↔ ∀x m(x) = m(x)

and Boolean extensionality principle

∀po ∀qo p = q ↔ (p ↔ q)

are both valid in Henkin semantics. In order to guarantee Henkin completeness
these infinitely many axioms3 are assumed to be available in the search space
of nearly all approaches. The problem is that the βη-reasoning facilities built-in
to higher-order unification are not sufficient to cover all extensionality aspects
in theorem proving, such that blind search with these axioms is additionally
required. In practical applications, however, the extensionality axioms are at the
expense of completeness entirely or at least partly avoided. A complete approach
which avoids these axioms in the search space and instead employs a goal directed
extensionality treatment is provided by [BK98a].

3 “A Curious Inference”

In [Boo98, Chapter 25, p. 376–382] Boolos presents an example of a first-order
problem which has only a very long derivation in first-order logic, but which
has a short derivation in a second-order logic, by making use of comprehension
axioms. He builds up on earlier work by Gödel [Göd36] who showed that in a
higher-order logic by going to higher levels it may be possible to obtain short
proofs.

In this section we take a closer look at this example and shed light on the
question why a comprehension axiom of second-order logic is needed and even
first-order with definition principle wouldn’t suffice to generate short proofs.

Boolos assumes an inference system in the first-order predicate calculus with
identity and function symbols s (unary) and f (binary).

1. ∀n f(n, 1) = s(1)
2. ∀x f(1, s(x)) = s(s(f(1, x)))
3. ∀n ∀x f(s(n), s(x)) = f(n, f(s(n), x))
4. D(1)
5. ∀x (D(x) → D(s(x)))

...
6. D(f(s(s(s(s(1)))), s(s(s(s(1))))))
3 Polymorphism may help to avoid infinitely many extensionality axioms in the search

space. However, polymorphism does solve the search space problem induced by blind
forward search with the extensionality principles.



A Lost Proof 45

Notice that there is no induction principle available. If it were available
there would be a proof in two steps, namely because of (4) and (5), we would
get ∀x D(x) by induction and hence D(f(s(s(s(s(1)))), s(s(s(s(1)))))) by ∀-
elimination.

Actually, there is a relatively easy but enormously long proof. f is an Acker-
mann function and it is possible to prove the conclusion by f(s(s(s(s(1)))),
s(s(s(s(1))))) − 1 many application of Modus ponens from (4) with (5) to
come to (6). Function f as defined in (1)–(3) grows extremely fast and hence
f(s(s(s(s(1)))), s(s(s(s(1))))) is a very big number4 such that there is no chance
to actually perform so many applications with all computation power ever.

A proof in second-order logic makes use of comprehension axioms, in partic-
ular, of the following two5:

∃N ∀z N(z) ↔ (∀X X(1) ∧ ∀y (X(y) → X(s(y))) → X(z))

∃E ∀z E(z) ↔ (N(z) ∧D(z))

With this comprehension principle Boolos proves strong lemmata which can
be viewed as conditional induction principle of the kind: “assumed the induction
principle holds for number z – corresponding to N(z) – then we can show for
any predicate X a property X(z) by induction.”

The proof goes as follows; first you establish the following lemmata:

Lemma 1: N(1),∀y (N(y) → N(s(y))), N(s(s(s(s(1))))), E(1), ∀y (E(y) →
E(s(y))), and E(s(1))

Proof sketch: These are easy consequences of the axioms.

Lemma 2: ∀n N(n) → ∀x (N(x) → E(f(n, x)))

Proof sketch:

– Define M(n) ↔ (∀x N(x) → E(f(n, x)). We want ∀n (N(n) → M(n)).
Enough to show M(1) and ∀n (M(n) → M(s(n))), since then from N(n)
follows M(n) by definition of N(n) as

N(z) ↔ (∀X X(1) ∧ ∀y (X(y) → X(s(y))) → X(z))

We can instantiate X by M , in particular, the definition of N does not refer
to M and is a proper definition.

4 Number in the sense that f(s(s(s(s(1)))), s(s(s(s(1))))) unravels into the successive
application of a very big number of s’s to 1; in fact, Boolos shows that this number

is at least the result of an exponantial stack 2(2···2) containing 64K ‘2s’ in all.
5 In the comprehension schema in Subsection 2.1 we employed = to cover the general

case. Here N is a predicate and N(z) a term of type o such that = can be replaced
by ↔ by boolean extensionality as introduced in Subsection 2.3.



46 C. Benzmüller, M. Kerber

The rest of the proof of the lemma is mainly a further reduction of the problem
in a similar way, the theorem itself is an easy application of the two lemmata.

Boolos’ proof makes a couple of times use of the comprehension principle:

Subgoal to prove comprehension axiom applied
∀n N(n) → (∀x N(x) → E(f(n, x))) ∃M ∀n M(n) ↔ (∀x N(x) → E(f(n, x)))
∀x N(x) → E(f(1, x)) ∃Q ∀x Q(x) ↔ E(f(1, x))
∀x N(x) → E(f(s(n), x)) from
∀x N(x) → E(f(n, x))

∃P ∀x P (x) ↔ E(f(s(n), x))

In plain first-order logic this cannot be modelled. Even in first-order logic with
definition principle it can’t. Namely if we try to do so we run into problems. For
instance, we may try to define N(n) as M(1) ∧ ∀y (M(y) → M(s(y))) → M(n),
but this is no longer a proper definition, since now N is defined in terms of M
and M in terms of N , that is, this higher-order construction cannot be modelled
in first-order logic. The original definition of N heavily depends on the universal
second-order quantifier ∀X, in which X can be later instantiated by predicates
which are defined in terms of N itself.

Boolos’ example – as well as Gödel’s results – show that even for cases in
which it is sufficient to stay completely in first-order logic in principle, it may
not be sufficient in practice.

4 Implications, Questions, and Challenges

In this section we discuss the implications of this example for recent higher-order
theorem proving approaches, formulate some related foundational questions, and
explain why we consider Boolos’ example as a challenge in automated reasoning
for the new millennium.

4.1 Implications for existing Higher-order theorem proving
approaches

For higher-order automated theorem proving there is the very difficult question
how it may be determined whether certain comprehension axioms are necessary
or not. Note that the comprehension axiom required in the above proof can
not be replaced by the unification with a λ-expression, since Boolos’ problem
is initially a mere first-order problem, that is, there is no second-order term
given to unify with. Since there is in particular no higher-order variable given
in the problem formulation also primitive substitution is not applicable. Hence,
without comprehension and higher-order variables there is no chance at all to
introduce any kind of structures that could support Boolos proof.

Of course, theoretically there are the extensionality axioms which contain
higher order variables. Furthermore, in our particular case one could think of
adding some new axioms like

∀bo ∃Nαn→o ∀zn N(zn) = b



A Lost Proof 47

instead of all comprehension axioms. The idea would be to leave the particular
structure of the terms to the right open at the beginning and to employ primitive
substitution to generate respective instances for b (which may depend on z)
during proof search. A third option is to introduce free variables via the following
tertium non datur axiom

∀bo b ∨ ¬b

Whereas it seems to be impossible to derive the required comprehension axioms
from the extensionality axioms by applying the primitive substitution principle,
this is far more promising in the latter cases. However, as remarked in Subsec-
tion 2.2, without guidance, primitive substitution just subsequently enumerates
formula schemes, such that this would differ only slightly from a direct enumer-
ation of all comprehension axioms (for terms B of type o).

As remarked in Subsection 2.1 current approaches typically completely avoid
the comprehension axioms (in practical applications the extensionality axioms
and the tertium non datur axiom are avoided as well). Thus, Boolos elegant
higher-order proof is not supported in these approaches. However, there exist
completeness proofs for them ensuring that any formula that is valid in Henkin
semantics can indeed be shown as such. Of course, the intractable first-order
proof for Boolos’ examples can theoretically be synthesised, so the example is
not a counterexample to, but an example of these completeness result. It demon-
strates well what completeness means, namely that practically a proof may not
be found since proofs are prohibitively long. While this is clear for problems
which do not have short proofs, Boolos’ example has a practically tractable
(with respect to its size) higher-order proof. It gets lost, however, in standard
higher-order theorem proving because the comprehension schemes (or alterna-
tive axioms) are not available. Hence the question arises whether it makes sense
at all to avoid the comprehension principles in the simple theory of types if this
has the side effect that some tractable proofs get lost thereby. Especially in sys-
tems aiming at supporting non-trivial mathematics, where similar elegant proof
constructions are potentially required this could be a serious problem.

4.2 Why is Boolos’ example so challenging

Without any doubt the problem above is a challenge problem for automated
theorem provers and we try to speculate in the following how it may be possible
to solve such hard problems systematically. However, it should be very clear
that these problems will remain very hard for the foreseeable future. While
the problem to search in the original space is too hard, the problem to bring
arbitrary comprehension axioms into play will open a different dimension with
comparatively short proofs but extremely bushy search spaces, the only way to
restrict that in some way seems at the moment to see how humans can master
such search problems. Different observations can be made on that:

– Firstly, this problem cannot be solved by simply following the obvious path.
In order to recognise that and to try to avoid the trap of following myriads
of modus ponens rules, one would either have to know a priori that an



48 C. Benzmüller, M. Kerber

Ackermann function is involved and brute force won’t lead to success, or
after a while – on reflection of the progress – one would recognise that a
brute force approach is not promising.

– Secondly, a human mathematician can recognise that the problem would be
easy, if the induction principle were given. This again – as in the previous
point – requires explicit knowledge of this principle. If somebody doesn’t
know the induction principle he/she has almost no chance to invent the
trick.

– Thirdly, the insight that with induction the problem would be simple gives
some chance to speculate the idea to prove the theorem in the form of as-
sumed reasoning of the type: “assume we had an induction principle for a
particular number, then we could prove a particular statement. Since we
don’t have it, we assume it by a predicate N , which is defined by a compre-
hension axiom.” This is certainly a very sophisticated reasoning step, and to
our knowledge no system currently available is able to do it. The attempts
to lemma speculation are all much more direct and the lemma speculated is
the one that is needed to continue search.

– Fourthly, the way how the comprehension axioms are formed in the proof
is quite systematic and they are closely related to the problem. It would be
necessary to follow a similar line of systematic exploration.

– Fifthly the problem will remain difficult even if the questions above are
answered, since on the one hand a new approach with defining new concepts
has to be applied, and on the other hand it has to be applied not only once,
but several times. This is a significant problem, since typically it is not so
clear in an automated theorem prover whether it makes progress towards
a solution. In some way in Boolos’ proof it seems to be very clear that
there is progress towards a proof, since the formulae to be shown in the
sub-statements are getting smaller. Automated theorem provers would need
an introspection capability and some better – more high-level – criterion for
progress.

4.3 How to find a solution?

In this Subsection we speculate what techniques are around that can be explored
to get a handle on finding Boolos’ proof automatically.

– Firstly, it is clear that we need pretty high-level reasoning. Proof planning
(as introduced by Bundy [Bun88]) is such a high-level form of reasoning. It
would be necessary to build high-level methods which can address the type
of problem we try to address.

– Proof planning links in with a different observation from above, namely that
a lot of knowledge is necessary to attack the problem successfully. Unfor-
tunately, most systems seem not to benefit from big amounts of data, but
get confused, since they can’t see the wood for the trees. A better way to
structure knowledge bases seem to be an issue to address here.



A Lost Proof 49

– We already pointed to the importance of reflection. An experienced deduc-
tionist would certainly derive in an initial problem analysis the insight that
monotonous modus ponens applications will not be successful here while an
unexperienced person would reflect on the unsuccessful object level proof
attempts in order to come up with a similar conclusion soon later. It thus
could be sensible to develop theorem provers which not only construct proofs
or proof plans at object level but in parallel also reflect on their object-level
proof search in order to built up a kind of meta-level understanding for the
problem at run time. Proof critics as discussed in [IB95] can be seen as a first
step in this direction. Combined with an agent-based framework as discussed
in [BJKS01] respective proof critical agents could work in parallel with the
proof agents on object level.

– Another very important issue is to study re-representation in detail, that is,
not to work with the problem as it is, but to restructure it first. Pólya gave
the advise [Pól65, vol.2, p.80]: “Of course you want to restate the problem
(transform it into an equivalent problem) so that it becomes more familiar,
more attractive, more accessible, more promising.”. McCarthy put up the
mutilated checkerboard problem and its reformulations as a challenge prob-
lem [McC64].

– Selecting useful comprehension axioms is the same question as to form inter-
esting concepts as done in Colton’s work [CBW00]. For that reason it would
be interesting to study how the work on concept formation can be integrated
into a theorem proving framework.

– Human mathematicians are strongly guided in their proof search by models.
It may be worthwhile to study how the selection process of suitable compre-
hension axioms can be guided by semantic, model-based techniques [Ker94a].

5 Conclusion

We re-investigated a very amenable proof example originally provided by Boolos
to illustrate Gödels argument for the potentially drastic decrease of proof lengths
when ascending to a logic of higher order. Aside from its intended illustrative
character this example poses very practical questions and, as we belief, provides a
good basis for a critical discussion of recent automated theorem proving technol-
ogy. In particular we demonstrated that not only first-order theorem approaches
are in principle condemned to fail when applied to this example but also recent
higher-order approaches approaches and systems. The problem is that the avoid-
ance of axioms like the comprehension principles (or alternative axioms which
introduce free higher-order variables) in higher-order theorem proving obviously
causes the loss of tractable proofs, like Boolos’ elegant second-order proof for
the given example. The expressiveness and power of higher-order logic is not
employed to its full extend in recent higher-order approaches and on the given
example they would operate as näıve as their first-order counterparts.

Therefore we think that Boolos example will remain a very challenging prob-
lem for automation for the foreseeable future. Because of its perspicuity it is



50 C. Benzmüller, M. Kerber

however well suited to speculate and investigate what kind of mechanisms (such
as abstraction and reflection) will be required to fruitfully tackle it.

References

[ABB00] Peter B. Andrews, Matthew Bishop, and Chad E. Brown. System de-
scription: Tps: A theorem proving system for type theory. In David A.
McAllester, editor, Proceedings of 17th International Conference on Auto-
mated Deduction, volume 1831 of LNCS, pages 164–169. Springer, June 2000.

[ABI+96] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfen-
ning, and Hongwei Xi. TPS: A theorem proving system for classical type
theory. Journal of Automated Reasoning, 16(3):321–353, 1996.

[And71] Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic,
3(36):414–432, 1971.

[And72a] Peter B. Andrews. General models and extensionality. Journal of Symbolic
Logic, 37(2):395–397, 1972.

[And72b] Peter B. Andrews. General models, descriptions, and choice in type theory.
Journal of Symbolic Logic, 37(2):385–394, 1972.

[And86] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

[And89] Peter B. Andrews. On Connections and Higher Order Logic. Journal of
Automated Reasoning, 5:257–291, 1989.

[Bar84] Hendrik P. Barendregt. The Lambda Calculus – Its Syntax and Semantics.
North Holland, 1984.

[BCF+97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siek-
mann, and V. Sorge. Ω Mega: Towards a mathematical assistant. In William
McCune, editor, Proceedings of the 14th Conference on Automated Deduc-
tion, LNAI, Townsville, Australia, 1997. Springer Verlag.

[Ben01] C. Benzmüller. Comparing approaches to resolution based higher-order theo-
rem proving. Synthese, An International Journal for Epistemology, Method-
ology and Philosophy of Science, 129, 2001. To appear.

[BJKS01] C. Benzmüller, Mateja Jamnik, Manfred Kerber, and Volker Sorge. An agent
based approach to reasoning. KI-2001, 2001. To appear.

[BK98a] C. Benzmüller and M. Kohlhase. Extensional higher-order resolution. In
Kirchner and Kirchner [KK98].

[BK98b] C. Benzmüller and M. Kohlhase. Leo – a higher-order theorem prover. In
Kirchner and Kirchner [KK98].

[Boo98] George Boolos. Logic, Logic, And Logic. Harvard University Press, 1998.
[Bun88] Alan Bundy. The use of explicit plans to guide inductive proofs. In Ewing

Lusk and Ross Overbeek, editors, Proceedings of the 9th CADE, pages 111–
120, Argonne, Illinois, USA, 1988. Springer, LNCS 310.

[CAB+86] Robert L. Constable, S. Allen, H. Bromly, W. Cleaveland, J. Cremer,
R. Harper, D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki,
and S. Smith. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[CBW00] Simon Colton, Alan Bundy, and Toby Walsh. Automatic invention of integer
sequences. In Henry Kautz and Bruce Porter, editors, AAAI-2000, Austin,
Texas, USA, 2000. AAAI Press, MIT Press.



A Lost Proof 51

[CCF+95] C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Muñoz,
C. Murthy, C. Parent, Ch. Paulin-Mohring, A. Säıbi, and B. Werner. The
Coq proof assistant reference manual, version 5.10. rapport technique 177,
INRIA, July 1995.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[Göd36] Kurt Gödel. Über die Länge von Beweisen. Ergebnisse eines mathematischen
Kolloquiums, 7:23–24, 1936.

[Gor85] Mike Gordon. HOL: a machine oriented formulation of higher-order logic.
Technical Report 68, University of Cambridge, Computer Laboratory, July
1985.

[Hen50] Leon Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15(2):81–91, 1950.

[Hue72] Gérard P. Huet. Constrained Resolution: A Complete Method for Higher
Order Logic. PhD thesis, Case Western Reserve University, 1972.

[Hue73] Gérard P. Huet. A mechanization of type theory. In Proceedings of the
Third International Joint Conference on Artificial Intelligence, pages 139–
146, 1973.

[Hue75] Gérard P. Huet. An unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975.

[IB95] Andrew Ireland and Alan Bundy. Productive use of failure in inductive
proof. Special Issue of the Journal of Automated Reasoning, 16(1–2):79–
111, 1995.

[JP72] D. C. Jensen and Thomasz Pietrzykowski. A complete mechanization of (ω)-
order type theory. In Proceedings of the ACM annual Conference, volume 1,
pages 82–92, 1972.

[Ker94a] Manfred Kerber. How to use a first-order model generator for adjusting prob-
lem formulations of higher-order logic. In Ricardo Caferra, Chris Fermüller,
Alex Leitsch, and Tanel Tammet, editors, Proceedings of the CADE-
Workshop on Automated Model Building, pages 22–25, Nancy, France, 1994.

[Ker94b] Manfred Kerber. On the translation of higher-order problems into first-order
logic. In Tony Cohn, editor, Proceedings of the 11th ECAI, pages 145–149,
Amsterdam, The Netherlands, August 1994. John Wiley & Sons, Chichester,
England.

[KK98] C. Kirchner and H. Kirchner, editors. Proceedings of the 15th Conference
on Automated Deduction, number 1421 in LNAI, Lindau, Germany, 1998.
Springer Verlag.

[LP92] Z. Luo and R. Pollack. Lego proof development system: User’s manual.
Technical report, Department of Computer Science, Edinburgh University,
1992.

[McC64] John McCarthy. A tough nut for proof procedures. AI Project Memo 16,
Stanford University, Stanford, California, USA, 1964.

[McC97] William McCune. Solution of the Robbins problems. Journal of Auto-
mated Reasoning, 19(3):263–276, 1997. see also \tthttp://www.mcs.anl.

gov/home/mccune/ar/robbins/.
[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: a prototype verification sys-

tem. In D. Kapur, editor, Proceedings of the 11th Conference on Automated
Deduction, volume 607 of LNCS, pages 748–752, Saratoga Spings, NY, USA,
1992. Springer Verlag.



52 C. Benzmüller, M. Kerber

[Pól65] George Pólya. Mathematical Discovery – On Understanding, Learning, and
Teaching Problem Solving. Princeton University Press, Princeton, New Jer-
sey, USA, 1962/1965.

[RSG98] Julian Richardson, Alan Smaill, and Ian Green. Proof planning in higher-
order logic with λclam. In Kirchner and Kirchner [KK98], pages 129–133.

[Rus02] Bertrand Russell. Letter to Frege. Printed in [vH67], 1902.
[Rus03] Bertrand Russell. The principles of mathematics. Cambridge University

Press, Cambridge, England, 1903.
[Rus08] Bertrand Russell. Mathematical logic as based on the theory of types. Amer-

ican Journal of Mathematics, XXX:222–262, 1908.
[vH67] Jean van Heijenoort. From Frege to Gödel : a source book in mathematical

logic 1879-1931. Source books in the history of the sciences series. Harvard
University Press, Cambridge, MA, USA, 3rd printing, 1997 edition, 1967.

[Wol93] David A. Wolfram. The Clausal Theory of Types. Cambridge University
Press, 1993.


