
Toward a Verified Generic Prooftool

Pieter Audenaert

University of Gent, Belgium

Abstract. In this short paper we present an informal report on the ef-
fort of the development, specification and verification of a generic Higher-
Order-Logic prooftool. Some problems that had to be coped with are
discussed in detail.

1 TAMTAM: a Generic Prooftool

TAMTAM (”TAbleau-Methods To Analyze Models”) is a tableau-style prooftool.
All logic-rules that are to be used are described in a logic-file, defining that
particular logic. One has to provide the syntax-rules for the formulas and the
tableau-style rules that are applicable on these formulas. As such, there is a
complete freedom to define new logics. Since TAMTAM is programmed in the
ISO-standard for Prolog [3], one has to define logics based on Prolog-style pred-
icates, thus a basic knowledge of Prolog is absolutely necessary.

Our aim is a generic tool that is specified and verified in a formal way. A lot
of prooftools are available, and most of them are for free, such as PVS, HOL,
linTAP, 3TAP, PTTP or leanTAP. But when the aim is to verify the prooftool,
one has to specify, verify and implement the prooftool at the same time.

TAMTAM consists of three main parts: the core (only 5% of the total code),
a standard library (65%) and the interface (30%). Of course, the core is the
most important part. We specified and verified this core making use of the pack-
age PVS [5]). Thus we had to write a PVS-specification for the corresponding
Prolog-code. Prolog programs have both a declarative and a procedural meaning.
The declarative (or descriptive) meaning is concerned with the objects and their
relationships as defined by the program. The procedural meaning is concerned
with how and in what order such relationships are evaluated to obtain a solution.

Ideally, programmers should restrict their attention to the declarative meaning
and leave the matters of the efficiency of the search processes to the Prolog-
implementation. That leads to much shorter and more easily understood pro-
grams. Unfortunately, in order to specify and verify the Prolog-code in PVS,
one has to take care of the order of the evaluation and so the purely declarative
approach is not sufficient. We will discuss the most important difficulties we
encountered.
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2 Verifying TAMTAM in PVS

As software packages become larger, it is more difficult to understand them com-
pletely. Small bugs can remain hidden for years, and at a critical point cause a
lot of harm. Therefore, programs should be specified in some way, and formally
verified to know for sure that they will work the way we expect.

PVS [5] has become a commonly used tool for specifying and verifying soft-
and hardware. It runs in unix-environments, and it is for free. The source is
not open and to program add-ons, one should know some LISP. We used PVS
(v2.2) to prove that TAMTAM works correctly. As already said, PVS is mainly
operational inspired, and we had some problems to specify a Prolog-environment.

The development of TAMTAM was done in two stages: first, we made a proto-
type and tried to specify and verify it. At this stage, we learned a lot about how
to implement algorithms in Prolog in a way that they are easily translated to
PVS. Then, these techniques were used in the final design, and at this stage we
could benefit from the results of the early tests. We now discuss the two stages
of the work:

2.1 Stage 1: a PVS-Specification for Prolog

When specifying Prolog-programs, one has to start with a specification of Prolog
itself. In its essence, Prolog consists of the following parts: the syntax of terms,
substitution and unification, and the execution model (resolution and backtrack-
ing).

Actually, giving a PVS-specification for all these parts is tantamount to spec-
ifying a Prolog-compiler as described in the Prolog reference-manual [3]. For
example, verified Prolog-compilers can be found in [4] and [6]. This is certainly
unnecessary and therefore, we developed a simplified Prolog-version, customized
to PVS.

Prolog-Terms in PVS. First of all, one has to pay attention to the typing of
Prolog-terms in PVS. A BNF-definition of (a part of) the types in ISO-Prolog
is given as:

<Term> ::= <Var>|<Atom>|<Integer>|<Float>|<Compound_Term>
<Compound_Term> ::= <Atom>(<Term>{,Term}*)

Recursive functions like this are difficult to deal with in PVS, and some Type-
Check-Conditions (TCC’s or Proof-Obligations) are generated, but some work
solved this problem. Also, note that (in ISO-Prolog) a single variable is consid-
ered to be a term. Instead, we will use a different notion of variables, by lifting
them up to PVS-variables. This is illustrated by the following example.
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Consider a clause foo(X). in a program. This means that for all X the pred-
icate foo holds, so that we can substitute any term t for X to get a true
clause foo(t). This implies that we have to specify in PVS the operation
of substituting terms, unifying terms, the most general unifier of two terms,
etc. . .

This involves a lot of work which can be circumvented by removing the
variables from the BNF-definition, and using PVS-variables, ranging over
the Prolog-terms instead. So we write down a fact as FORALL (X: pterm):
foo(X)=ptrue, where ptrue stands for ”true” at the Prolog-level. Note that
this is equivalent to ISO-Prolog, but poses some problems when we have to
prove partially instantiated goals. This is solved by using the corresponding
universal quantifiers in the PVS-theorems and axioms.

This way, we developed a specification for the Prolog-syntax equivalent to that
in the reference-manual [3]. In the same way, we solved the other problems
concerning substitution and unification.

The Prolog Execution Model. Now one has to deal with the Prolog ex-
ecution model consisting of resolution and backtracking. We learned from the
work at this stage that specifying code that is relying heavily on backtracking is
very difficult. Therefore, we redesigned the core (see stage 2) such that it can be
described completely in terms of pre- and postconditions. This way, our Prolog-
code is its own specification, and we can achieve a higher level of abstraction.
The techniques used to accomplish this are described further. At this stage we
can already say that in order to guarantee that the declarative and procedural
meanings of the program are the same we consider a cut free implementation of
the core.

In fact, the relevant part is semi-deterministic, and we programmed a special-
purpose tool (called ”pl2pvs”) to translate parts of the core automatically to
PVS-specification code.

Some Generated Code. We will now discuss an example of generated code,
based on the use of ”pl2pvs”. First, we give a part of the type-definitions of
Prolog. We start with a Prolog-term. In PVS, this is specified as an abstract
datatype pterm. Remember that we use no variables at the Prolog-level.

pterm: DATATYPE
BEGIN
ptatom(a: patom): ptatom?
ptinteger(i: pinteger): ptinteger?
ptfloat(f: pfloat): ptfloat?
ptcompound(at: patom, l: (cons?[pterm])): ptcompound?

END pterm
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Here ptatom, ptinteger, ptfloat and ptcompound are constructors that are
used to generate ”things” of the type pterm. The predicates called ptatom?,
ptinteger?, ptfloat? and ptcompound? are recognizers, used to determine
which sort of pterm we are dealing with. Note that the constructor of a com-
pound term at(a_1,a_2,...,a_n) needs a Prolog-atom called ”at”, and a list
of pterms called ”l”, as expressed by (cons?[pterm]) (this means ”the type of
lists of Prolog-terms”). Some other definitions and axioms are needed to specify
the Prolog-types, but we don’t want to go into details here.

Next, we define a Prolog-predication (a ”callable” term):

ppredication: DATATYPE
BEGIN
ppatom(a: patom): ppatom?
ppcompound(at: patom, l: (cons?[pterm])): ppcompound?

END ppredication

After specifying a PVS-function peval (which evaluates predications to ptrue
or pfail), we define the program itself as a collection of PVS-axioms, like this
(note that (: and :) are used to create a list containing one element X):

prog: AXIOM
FORALL (X: pterm):

(peval(ppcompound(multiple_of_2,(:X:)))=ptrue
AND

peval(ppcompound(multiple_of_3,(:X:)))=ptrue)
IMPLIES peval(ppcompound(multiple_of_6,(:X:)))=ptrue

This, of course, stands for the Prolog-clause

multiple_of_6(X):-
multiple_of_2(X),
multiple_of_3(X).

2.2 Stage 2: Final Design

After developing this framework for specifying Prolog-programs in PVS, we now
focus on a few of the critical decisions we had to make, and some of the techniques
used in the final design, to make verification feasible.

Object-oriented programming: Object-oriented software is all about ”ob-
jects”. An object is a ”black box” which receives and sends messages, and con-
tains ”code” (sequences of computer instructions) and ”data” (information which
the instructions operate on). An object is defined via its ”class”, which deter-
mines all the properties of an object. Objects are individual ”instances” of a
class. Hence proving facts about objects and their methods (i.e. the action that
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a message carries out) is a common activity in OO software design. These tech-
niques are heavily used in TAMTAM. We will now develop Prolog-code for such
an abstract object node which is easy to translate to PVS-code, while explaining
other techniques.

Chaining Predicates: People starting to learn Prolog often find it very con-
fusing that one cannot assign a value to a variable. Indeed, backtracking can
always undo unification. First of all, we therefore designed the Prolog-predicates
as follows: foo(+Input_1,...,+Input_n,-Output_1,...,-Output_m) (+ and -
are used by convention to distinguish between input and output). When chaining
predicates like this, one has the effect of passing values from one predicate to
another, provided they don’t fail. This is easily translated to PVS.

Semi-Deterministic Predicates: Secondly, the predicates are designed in a
semi-deterministic way, which means that, although the function can possibly
backtrack, theorems can be proven about them, in terms of pre- and postcondi-
tions. This way we can handle the problem of backtracking predicates in PVS.

Making use of these properties, one can use techniques from object-oriented-
programming to introduce objects and their methods. There are only three types
of objects in TAMTAM: proofs, proof-trees, and proof-tree-nodes. Their respec-
tive hierarchy is assumed to be clear. In TAMTAM, Nodes are defined as an
abstract datatype containing information on nodes in a tableau. For example, it
contains a list of antecedent-formulas, and a number describing its position in
the tree:

node_begin_definition. % Begin the definition of an object ’node’
% and it’s methods.

node_definition(X):- % The "functor"-goal is a constructor for
functor(X,node,8). % nodes, this creates a term "X"

% containing 8 pieces of information.

node_aformulas(X,Y):- % A selector for the list of antecedent-
node_definition(X), % formulas. The "arg"-goal selects the
arg(2,X,Y). % second argument of "X", and instantiates

% the variable "Y" to it.

node_number(X,Y):- % A selector for the number of the node.
node_definition(X),
arg(6,X,Y).

... % Some other selectors and methods.
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Now we will develop a copy-constructor for an object node. Most of the time
we will use this to copy information from one variable Input to another called
Output, but in the mean time changing the value in X to another value Val:

node_copy(Input,X,Val,Output):-
node_copy_except(X,Input,Output), % Copy everything from Input

% to Output, except for ’X’.
atom_concat(’node_’,X,Selector), % Choose the correct selector,
Put=..[Selector,Output,Val], % and construct the goal,
Put. % which is called.

node_copy_except(X,Input,Output):- % Copy everything except ’X’
node_definition(Output), % making use of selectors.
node_copy_except_routine(X,Input,Output,aformulas),
node_copy_except_routine(X,Input,Output,number),
... % A lot of other things are

% to be copied too...

node_copy_except_routine(X,_,_,Y):- % Don’t copy the chosen value.
X=Y,!.

node_copy_except_routine(_,Input,Output,Y):- % Now ’X’ is
atom_concat(’node_’,Y,Selector), % different from ’Y’, and we
Get=..[Selector,Input,Arg], % construct a goal to select
Get, % the value. This goal is
Put=..[Selector,Output,Arg], % called and the value is put
Put. % in the right place.

After developing the class of Nodes, we can immediately start proving properties
about it. For example, suppose we copy Input to Output except for the number
which is set to the Prolog-list [1,2,3], then we can prove in PVS that applying
node_copy(Input,number,[1,2,3],Output) implies that the formulas remain
unchanged, but the number of Output is now [1,2,3] (note that the list is
represented in PVS by (:1,2,3:)):

node_th1: THEOREM
FORALL (node1,node2: NODES):

node_copy(node1,number,(:1,2,3:),node2)
IMPLIES

node_formulas(node1)=node_formulas(node2)

node_th2: THEOREM
FORALL (node1,node2: NODES):

node_copy(node1,number,(:1,2,3:),node2)
IMPLIES

node_number(node2)=(:1,2,3:)
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Abstraction: As already said, abstraction leads to positive results easier. As an
example, we will discuss the code to open and close streams in TAMTAM, and
show how good Prolog-programming can result in better PVS-code. Consider the
ISO-predicate to open streams: open(+File,+Mode,-Stream,+Options). Now
suppose you want to open a file, do something with it, and then close it:

goal:-
open(’foo’,’read’,Stream,[]), % Open a stream for this file.
do_something(Stream), % Do something with it.
close(Stream). % Close the stream.

This seems fine, but what happens when the predicate do_something/1 sud-
denly fails completely unexpected (due to a disk error for example)? As a result,
the main goal will fail too, and we will lose our reference Stream to our file,
which remains open. Thus we should abstract the concept of streams in our
PVS-specification.

Streams are specified as a datatype, from which one can extract data, and noth-
ing is said about opening or closing them. Of course, the Prolog-code accomplish-
ing this is verified separately. Frequently used, small and verified code-snippets
are collected in a sort of standard library. This way, we avoid being distracted
in the main PVS-proof by details.

Now suppose again that we want to invoke the goal do_something/1 on the
file foo. Then we call checkstream(’foo’,’read’,[],do_something(_)). This
will open a read-stream for the file foo, and call do_something(Stream) with
Stream properly instantiated. When finished, checkstream will close the stream
and it will succeed if do_something succeeds, and fail when do_something fails.
This is the code:

checkstream(File,Mode,Options,Goal):-
Goal=..Goal_List, % Unify last argument of Goal
last(Stream,Goal_List), % with the Stream.
open(File,Mode,Stream,Options), % Open it.
checkstream_go(Stream,Goal),!. % Call subroutine.

checkstream_go(Stream,Goal):-
Goal, % Call Goal, and if it succeeds
close(Stream,[force(true)]). % close the Stream.

checkstream_go(Stream,_):- % Our Goal failed
close(Stream,[force(true)]), % but nevertheless close stream.
fail. % Then fail.

Other techniques are used to make our PVS-specification more abstract, but we
cannot explain everything here.
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3 Conclusion

As a conclusion, we can say that is was very difficult to develop the verified
prooftool TAMTAM, because we had to think continuously about how to code
Prolog-algorithms in a way that we could translate it in PVS-code. A lot of
techniques are employed to achieve this goal. Once this was done, we could
immediately start proving interesting properties of the tool. The core is not
verified completely yet, but this will be done soon.
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