
BDD Representation Judgements in HOL : A
Performance Evaluation

Hasan Amjad

University of Cambridge Computer Laboratory

Abstract. This paper describes some preliminary results in evaluating
the performance of representation judgements in the Hol98 proof as-
sistant (HOL) [10]. Representation judgements allow “LCF-style” fully-
expansive programming of BDD-based symbolic algorithms [6]. They are
of the form ρt 7→ b meaning “HOL term t is represented by BDD b with
respect to variable order ρ” and were introduced in [7] which also eval-
uated the performance of reachability calculations using this approach.
We now extend the evaluation to include a model checker for the Com-
putation Tree Logic (CTL) [1] and provide tentative evidence that the
performance is within acceptable bounds.

1 Background and Motivation

Theorem proving and model checking are two complementary approaches to
formal verification. Model checking is based on exhaustive exploration of the
state space of the system under consideration. Verification is fully automatic
and can provide counter-examples for debugging but suffers from the state ex-
plosion problem when dealing with complex systems. Theorem proving is based
on exploring the space of correctness proofs for the system. It can handle com-
plex formalisms but requires skilled manual guidance for verification and human
insight for debugging.

An increasing amount of attention has thus been focused on combining these
two approaches (see [17] for a survey). The two basic strategies considered are
abstraction and composition (see [12, 13] for examples). Abstraction tries to ab-
stract the state space of the system to a smaller one – using a theorem prover to
show that the abstraction preserves properties of interest – in the hope that the
abstracted system can be handled by the model checker. Composition breaks up
the problem into smaller subgoals using a theorem prover each of which can be
verified with a model checker and the results then composed back in the theorem
prover. Representation judgements allow model checking steps to be composed
with deductions performed by theorem proving.

HOL is based on the LCF proof assistant ([9]) and is written in Moscow ML.
Terms are values of type term and can be freely constructed. Theorems are repre-
sented as values of type thm and can be constructed using axioms and inference
rules only i.e.by proof. HOL provides a number of decision procedures, proof
searches and simplifiers to aid this task. The goal of the work described here is



18 H. Amjad

to generalise the “LCF-style” fully-expansive approach to support combinations
of theorem proving and model checking

This requires generalising the idea of theorem to include BDD representation
judgements as described in [7]. A central concern is to ensure that this approach
does not create an unacceptable penalty in terms of the performance of the model
checker. In this paper we evaluate the performance of a CTL model checker
integrated into HOL using this approach. In the next section the CTL model
checking algorithm is described briefly. In section 3 we introduce representation
judgements, and empirical results are reported in section 4. We conclude with
an overview of related work and ideas for the future.

2 CTL Model Checking

Let M be a finite state machine whose state is a vector (v1, . . . , vn) of boolean
variables v1, . . . , vn. Let P be some property of interest of states of M and let
S be defined so that Si(v1, . . . , v2) is true if (v1, . . . , vn) is a state reachable in i
or fewer steps from some initial state of M. Then the term ∀i.Si(v1, . . . , vn) ⇒
P(v1, . . . , vn) is true if all reachable states of M (represented as a BDD denoted
by [[M]]ρ, where ρ is the variable ordering used for the BDD) satisfy P.

Any quantified boolean formula with boolean free variables can be repre-
sented by a binary decision diagram (BDD) ([2]). The term above is quantified
over natural numbers, so standard BDD algorithms cannot be used to construct
its BDD. It has already been demonstrated in [7] that standard reachability al-
gorithms programmed in HOL can compute the BDD of such natural number
quantifications. In this paper we show how standard model checking algorithms
can compute the BDDs of HOL formulae representing the sets of states for which
a given CTL property holds in a given model.

CTL allows us to describe properties of the states and paths of a computation
tree. A computation tree is formed by unwinding (infinitely) the transitions of
M, starting with the initial states. CTL consists of propositional logic augmented
with path quantifiers and temporal operators. The two path quantifiers are A
(“ for all computation paths”) and E (“ for some computation path”). The five
basic temporal operators are:

– X (unary,“next state”) is satisfied by a state if there is a transition to a state
satisfying the required property.

– F (unary,“future state”) is satisfied by a state if there is a sequence of tran-
sitions (i.e. a path) to a state satisfying the required property.

– G (unary,“globally”) is satisfied by a state if all states along the path satisfy
the property.

– U (binary,“until”) is satisfied by a state if the first property holds along the
path until a state where the second property holds.

– R (binary,“release”) is satisfied by a state if the second property holds up
to and including the first state where the first property holds. However, the
first property need not ever hold. Thus this is the logical dual of U.



BDD Representation Judgements in HOL 19

The syntax of CTL is made out of state formulae which are true of states, and
path formulae which are true of paths (where by path we just mean a sequence
of states connected via transitions of the system). A well-formed CTL formula
is always a state formula, which it must be because the properties of a system
are semantically represented by sets of states of that system. However, we need
path formulae because the temporal operators talk about a state with respect
to the path of the computation tree the state is on. Formally, formulae of CTL
are constructed as follows:

Definition 1 Let AP be the set of atomic boolean propositions. Then CTL is
the smallest set of all state formulae such that

– T and F are state formulae.
– a ∈ AP is a state formula.
– If f and g are state formulae then ¬f , f ∨ g and f ∧ g are state formulae.
– If f and g are state formulae, then Xf , Ff , Gf , fUg and fRg are path

formulae.
– If f is a path formula, then Af and Ef are state formulae.

The ten compound operators thus formed can all be expressed in terms of
the three operators EX, EG and EU. We state the following without proof (see
[6]) :

Proposition 2

– AXf = ¬EX(¬f)
– EFf = E[TrueUf ]
– AGf = ¬EF(¬f)
– AFf = ¬EG(¬f)
– A[fUg] ≡ ¬E[¬gU(¬f ∧ ¬g)] ∧ ¬EG(¬g)
– A[fRg] ≡ ¬E[¬fU¬g]
– E[fRg] ≡ ¬A[¬fU¬g]

The CTL symbolic model checking algorithm is simply a procedure that,
given M and a CTL formula P, will return the set (as a BDD) of those states of
M that satisfy P. The notation R(v̄, v̄′) denotes the transition relation for M,
where v̄ is shorthand for the vector (v1, . . . , vn) and v̄′ denotes the next state
vector. R(v̄, v̄′) can easily be expressed as a boolean term (and hence a BDD).
Due to Proposition 2 it suffices to consider only EX, EG and EU from the set
of operators. We state the following results without proof (see [6] for details).

Proposition 3

– EGf is the greatest fixpoint (under subset inclusion over state sets) of the
function τ(Z) = f ∧EXZ.

– E[fUg] is the least fixpoint (under subset inclusion over state sets) of the
function τ(Z) = f ∨ (g ∧EXZ).



20 H. Amjad

These fixpoints are computed by iteratively computing approximations, each
step involving a computation of all states that still satisfy the required property
that are reachable in one more step (also called the relational product computa-
tion). Since the system is finite state and the approximations are increasing sets,
we are guaranteed to reach a fixpoint. The model checking algorithm follows.

Definition 4 The CTL model checking procedure [[−]]ρM is defined recursively
over the structure of CTL formulae as follows

– [[T]]ρM = TRUE and [[F]]ρM = FALSE, where TRUE and FALSE are the BDDs of
the boolean terms True and False respectively.

– [[a ∈ AP ]]ρM = the BDD of the set of states of M in which a is true.
– [[¬f ]]ρM = ¬b[[f ]]ρM and [[f ∧ g]]ρM = [[f ]]ρM ∧b [[g]]ρM where ¬b and ∧b are

standard BDD operations.
– [[∃xf ]]ρM = [[f ]]ρM ¹x←True ∨b [[f ]]ρM ¹x←False where t ¹x←C denotes the simul-

taneous substitution of the constant C for all free occurrences of the variable
x in the term t.

– [[EXf(v̄)]]ρM = [[∃v̄[f(v̄′) ∧R(v̄, v̄′)]]]ρM i.e. the relational product.
– [[E[fUg]]]ρM = [[µZ.g ∨ (f ∧EXZ)]]ρM by Proposition 3.
– [[EGf ]]ρM = [[νZ.f ∧EXZ]]ρM by Proposition 3.

It is clear that BDD operations, in particular the relational product compu-
tation, are the workhorses of the algorithm. An efficient model checker therefore
requires (among other things) efficient BDD operations. This is why most BDD
packages are written in highly optimized C, which immediately makes their
soundness suspect. The next section describes an approach to representing BDD
operations which we hope will restrict the ability of the programmer to introduce
soundness bugs, without slowing down the model checker too much.

3 Representation Judgements

In order to provide a platform for programming model checking procedures from
within HOL, the BuDDy ([3]) package has been interfaced to Moscow ML so that
BDDs can be manipulated as ML values of type bdd. A representation judge-
ment is a type term_bdd that represents a ‘judgement’ ρt 7→ b. An LCF-style
approach to ‘proving’ such a judgement is implemented much like thm imple-
ments theorems. Representation judgements are implemented in the BddRules
structure of the HolBddLib library.

Table 1 presents a subset of the ‘axioms’ and ‘rules’ that form the primitive
operations for term bdd, along with the names of ML functions implementing
them (in brackets). As the BuDDy package uses numbers to denote variables,
the function ρ maps variables to numbers. The BuDDy function ithvar (as
interfaced to Moscow ML) simply returns the BDD of the boolean variable v.
TRUE and FALSE denote the corresponding BDDs, and AND, OR, NOT, IMP, BIIMP,
forall and exists denote the eponymous BDD operations.



BDD Representation Judgements in HOL 21

Table 1. Primitive Operations for Representation Judgements

(BddT) True 7→ TRUE (BddF) False 7→ FALSE

(BddVar)
ρ(v) = n

ρv 7→ ithvar
(BddNot)

ρt 7→ b

ρ¬t 7→ NOT b

(BddAnd)
ρ t1 7→ b1 ρ t2 7→ b2

ρ t1 ∧ t2 7→ b1 AND b2
(BddOr)

ρ t1 7→ b1 ρ t2 7→ b2

ρ t1 ∨ t2 7→ b1 OR b2

(BddImp)
ρ t1 7→ b1 ρ t2 7→ b2

ρ t1 ⇒ t2 7→ b1 IMP b2
(BddEq)

ρ t1 7→ b1 ρ t2 7→ b2

ρ t1 = t2 7→ b1 BIIMP b2

(BddForall)
ρ t 7→ b ρ(v1) = n1 . . . ρ(vp) = np

ρ ∀v1 . . . vp.t 7→ forall(n1, . . . , np) b

(BddExists)
ρ t 7→ b ρ(v1) = n1 . . . ρ(vp) = np

ρ ∃v1 . . . vp.t 7→ exists(n1, . . . , np) b

In practice, quantification of conjunction (i.e.the relational product) occurs
frequently and is an expensive operation. BuDDy provides special operations
for performing these two steps in one pass, and BddRules provides term bdd
analogues for this.

Theorem proving support is provided by two rules. The first expresses the
fact that logically equivalent terms should have the same BDD (up to variable
orderings).

(BddEqMp)
` t1 = t2 ρ t1 7→ b

ρ t2 7→ b
(1)

The second rule is the only way to make theorems in BddRules. It simply checks
to see if the BDD part of the judgement is TRUE and if so, returns the term part
as a theorem.

(TermBddOracle)
ρ t 7→ TRUE

` t
(2)

This oracle is only as good as the BDD that was produced. Thus it depends
on the soundness of BuDDy. By treating BDD operations as inference appli-
cations, we restrict the scope of soundness bugs to single operations which are
easier to get right. This is why this approach was chosen in favour of a sin-
gle powerful rule which, given a term, would return its BDD. A utility func-
tion termToTermBdd : term→ term bdd is provided, which behaves as expected.
HolBddLib provides several other utility functions which are explained in detail
in [8].

From Table 1, we can derive a modified version of the model checker in
Definition 4, this time using representation judgements:

Definition 5 The CTL model checking procedure using representation judge-
ments, T [[−]]ρM, is defined recursively over the structure of CTL formulae as
follows

– T [[T]]ρM = BddT and T [[F]]ρM = BddF



22 H. Amjad

– T [[a ∈ AP ]]ρM = BddVar(a)
– T [[¬f ]]ρM = BddNot(T [[f ]]ρM) and T [[f ∧ g]]ρM = BddAnd(T [[f ]]ρM, T [[g]]ρM)
– T [[∃v̄f ]]ρM = BddExists(v̄, T [[f ]]ρM)
– T [[EXf(v̄)]]ρM = T [[∃v̄[f(v̄′) ∧R(v̄, v̄′)]]]ρM i.e. the relational product.1

– T [[E[fUg]]]ρM = T [[µZ.g ∨ (f ∧EXZ)]]ρM by Proposition 3.
– T [[EGf ]]ρM = T [[νZ.f ∧EXZ]]ρM by Proposition 3.

Given a model M and a CTL formula P that expresses some property of
M, we are interested in deriving a theorem that P is satisfied in M. In model
checking terms, this means that the set of reachable states ofM that satisfy P is
exactly the set of reachable states of M. Using representation judgements, this
can be achieved by evaluating

TermBddOracle(BddImp(T [[M]]ρ, T [[P]]ρM)) (3)

where T [[M]]ρ is just the term bdd analogue of [[M]]ρ. The implication operation
is needed because the BDD returned by T [[−]]ρM may contain unreachable states
that we are not interested in. TermBddOracle will then either return the theorem
or raise an exception.

It is clear from Table 1 that using representation judgements to manipulate
BDDs is less efficient than pure BDD manipulation because each BDD operation
requires a corresponding operation on the term part of the judgement. It is
therefore reasonable to investigate how bad this performance hit might be. We
do so in the next section.

4 Empirical Results

The BDD method for testing boolean satisfiability is only of heuristic value: the
problem is NP-complete. Using BDDs to represent state sets is similarly claimed
to be efficient only in a practical sense. Thus a performance evaluation needs
to demonstrate empirical results. Since this is a preliminary study, we have not
done extensive benchmarking. We have chosen a single scalable example, that of
a synchronous pipelined ALU (Fig. 1), first introduced in [4].

The circuit performs three-address logical operations on a register file (whose
registers are denoted by reg0, reg1, . . .). The pipeline has three stages:

1. Fetch: The operands are read from the register file (the source registers being
pointed to by the addresses src0 and src1 ) into the operand registers op0
and op1.

2. Execute: The ALU computes the result and writes it into the pipe register
res.

3. Write back : The result is written back into the register file, at the location
pointed to by dest.

1 R(v̄, v̄′) can be converted to term bdd form using termToTermBdd.



BDD Representation Judgements in HOL 23

Register File

Control

Pipe Register

Read ports Write port

AL
U

Bypass circuitry

Op
0

Op
1

Ins
tru

cti
on

 re
gis

ter

src1

src0

de
st

res

Fig. 1. Simple Pipelined ALU

There is a register bypass path, required for data forwarding. The circuit
thus contains both datapath and control circuitry. Addition of extra pipe regis-
ters would result in as many new stages, each propagating the result down the
pipeline. The number of registers, the number of instructions and the width of
the datapath are variable. For simplicity, we fix the number of instructions to two
(logical OR and NOR). For the timing measurements, we work with increasing
values for the width of the datapath and the number of registers in the register
file.

With these parameters, an instruction to the circuit has five components that
form the inputs:

– A one-bit opcode, ctrl.
– One-bit addresses for the two source and one destination registers (src0, src1

and dest respectively).
– A one-bit stall input. If this is true, signalling for example a cache miss, then

a no-op is propagated down the pipeline.

In this simple circuit, we are concerned with verifying two properties at the
RTL level. The first property is expressed by the CTL formula

AG(¬stall ⇒ ((aluop(src op0i, src op1i) = dest resi)) (4)

where aluop abbreviates a simple propositional formula to ensure that the correct
operation is applied given the value of ctrl. The place holders src op0,src op1 and



24 H. Amjad

dest res are abbreviations for the source registers for the operands and for the
destination register respectively, with the subscript encoding the bit. Thus, this
specifies that the destination register is always updated correctly.

To express src op0,src op1 and dest res in CTL, we must factor in the latency
of the pipeline. For example, for a given operation, the values in the source
registers at the time the operation begins are not the values that are input to
the operation. The values that are required are from the state of the register
file after the previous instruction has finished i.e. two clock cycles in the future.
Similarly, the value required for the destination register is the value three cycles
in the future.

The assumption here is that the an instruction begun at time t will not affect
the register file until time t + 3, i.e. three clock cycles in the future. To check
that this assumption holds, we check that,

EXkregj,i ⇔ AXkregj,i 1 ≤ k ≤ 3 (5)

where EXk abbreviates k applications of EX, and regj,i is bit i of register j.
This can also be done in the model checker.

After accounting for the latency in the pipeline, these abbreviations expand
out as follows (for simplicity, we assume there are only two file registers):

src op0i = (¬src1 ∧AX(AX(reg0,i))) ∨ (src1 ∧AX(AX(reg1,i))) (6)

and similarly for src op1. Similarly, dest res expands to

dest resi = (¬dest ∧AX(AX(AX(reg0,i))))
∨ (dest ∧AX(AX(AX(reg1,i)))). (7)

The second property of interest is that for each instruction, the register not
being written to (which is all registers if the pipeline stalls) is not changed. So
for example for register 1:

AG((stall ∨ ¬dest)⇒ (AX(AX(reg1,i)) = AX(AX(AX(reg1,i)))). (8)

For our experiment, we implemented two CTL model checkers in Moscow ML,
the first (PureCheck) using the BuDDy interface to Moscow ML directly, and the
second (RuleCheck) using BddRules but otherwise the same as PureCheck line
for line. These were used to verify both properties above for data path widths
from one to eight bits, and for two and four registers. Neither program used any
state space reduction techniques.

The same variable ordering was used for all BDDs. It is essentially the order-
ing given in [5] which generally yields good results: the source address registers
are closest to the root, with their bits interleaved. Next we interleave the stall
and destination address registers, for all three pipeline stages, starting with the
fetch stage. These are followed by the opcode, followed by the interleaved bits
of the operand, general and pipe registers (this time in big-Endian order).

Table 2 summarises the results of the experiment. Each entry is the ratio
of the time taken by RuleCheck to the time taken by PureCheck to verify both



BDD Representation Judgements in HOL 25

Table 2. Experimental results: RuleCheck time / Purecheck time

Bits/Registers Two Four

1 62.73 19.26
2 69.97 2.61
3 66.42 2.04
4 65.27 1.73
5 61.48 1.71
6 54.07 1.68
7 43.38 1.67
8 33.98 1.63

properties for the given values of datapath width and number of registers in the
register file. We see that though there is a clear penalty for using RuleCheck, the
difference in performance gets smaller as the system becomes more complex.2 In
fact, at any real world level of complexity, the difference should be quite small.

Intuitively the reason is easy to see: Most of the operations used in the
model checking algorithm are linear in the product of the sizes of the operand
BDDs. The relational product computation is an exception to this rule. Since
this computation occurs frequently, the model checker spends most of its time
computing relational products. But the corresponding operation on the term
part of the judgement is just a quantification plus a conjunction, which is linear
in the sizes of the operand terms i.e. it is relatively efficient in this case.

The same reasoning explains why increasing the number of registers has
greater effect: such an increment causes an exponential increase in the level of
branching in the computation tree, making the relational product much harder
to compute. Increasing the number of bits does not have the same effect because
in this circuit the value of each datapath bit is independent of the values of the
other datapath bits.

5 Future Possibilities and Related Work

Getting good results with a single class of example is not conclusive evidence
in favour of using representation judgements. However, the results can be called
encouraging. Further benchmarking is required, with other kinds of examples
such as asynchronous circuits, with other kinds of properties that may not require
large relational products, and with other implementations of the model checker
which use state space reductions and lower-level optimizations. The results also
justify a more scientific runtime analysis of the BddRules code.

The design of BddRules has been strongly influenced by the Voss system [14].
Voss uses a lazy ML-like functional language with BDDs as a built-in datatype.
2 For the first row of the table, the verification occurs within a second and so is very

sensitive to the environment even when averaged over several runs. Hence the odd
values.



26 H. Amjad

In [11], Voss is integrated with Hol88 enabling HOL to make external calls to
the Voss system, passing subgoals via a translation between HOL and Voss term
representations. Later work on Voss has largely been outside the public domain,
but the basic approach is that theorem proving is used to split goals into smaller
subgoals that are tractable for model checking, and to transform formulae so
that they can be checked more efficiently.

On a more general level, work on combining state-space exploration algo-
rithms with deduction has received considerable attention. The interested reader
is referred to [17, 13, 15, 16].

References

1. M. Ben-Ari, Z. Manna, A. Pnueli, : The temporal logic of branching time. Acta
Informatica 20(1983):207-226.

2. R. E. Bryant : Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams. ACM Computing Surveys 24(3):293-318. September 1992.

3. The BuDDy ROBDD Package : http://www.itu.dk/research/buddy
4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill : Sequential Circuit Veri-

fication Using Symbolic Model Checking. In proceedings of the ACM Design Au-
tomation Conference 1990.

5. J. R. Burch, E. M. Clarke, D. E. Long : Representing Circuits More Efficiently in
Symbolic Model Checking. In proceedings of the ACM Design Automation Con-
ference 1991.

6. E. M. Clarke, O. Grumberg, D. Peled: Model Checking, The MIT Press, 1999.
7. M.J.C. Gordon : Reachability Programming in Hol98 using Binary Decision Di-

agrams. In the 13th International Conference on Theorem Proving and Higher
Order Logics. Springer-Verlag. 2000.

8. M.J.C. Gordon : HolBddLib Documentation. Hol98 (Kananaskis release) documen-
tation. 2001.

9. M.J.C. Gordon, R. Milner and C. P. Wadsworth: Edinburgh LCF: A mechanised
logic of computation. LNCS 78, Springer-Verlag 1979.

10. The HOL Proof Tool : http://www.cl.cam.ac.uk/Research/HVG/HOL/
11. J. Joyce, C. Seger : The HOL-Voss System : Model Checking inside a General-

Purpose Theorem Prover. In LNCS 780, pages 185-198. Springer-Verlag, 1994.
12. K. L. McMillan : Symbolic Model Checking. Kluwer Academic Pub.,1993.
13. S. Rajan, N. Shankar and M. K. Srivas : An integration of model checking and

automated proof checking. In Pierre Wolper ed., CAV ’95 in LNCS 939. Springer-
Verlag 1995.

14. C-J. H. Seger : Voss - A formal hardware verification system: User’s Guide. UBC-
TR-93-45, The University of British Columbia, December 1993.

15. The Stanford Temporal Prover: http://www-step.stanford.edu
16. The Symbolic Model Prover: http://www.cs.cmu.edu/~modelcheck/symp.html
17. T. E. Uribe : Combinations of Model Checking and Theorem Proving. In Third

Intl. Workshop on Frontiers of Combining Systems, vol. 1794 of Lecture Notes in
Computer Science, pp. 151-170. Springer-Verlag, March 2000


