
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Institute for Representation and Reasoning

Ordinal Arithmetic: A Case Study for Rippling in a Higher Order
Domain

by

Alan Smaill, Louise Dennis

Informatics Research Report EDI-INF-RR-0040

Division of Informatics April 2001
http://www.informatics.ed.ac.uk/

Ordinal Arithmetic: A Case Study for Rippling in a
Higher Order Domain

Alan Smaill, Louise Dennis

Informatics Research Report EDI-INF-RR-0040

DIVISION of INFORMATICS
Institute for Representation and Reasoning

April 2001

Submitted to TpHOLs 2001

Abstract :
This paper reports a case study in the use of proof planning in the context of higher order syntax. Rippling is a

heuristic for guiding rewriting steps in induction that has been used successfully in the proof planning inductive of
proofs using first order representations. Ordinal arithmetic provides a natural set of higher order examples on which
transfinite induction may be attempted using rippling. Previously Boyer-Moore style automation could not be applied
to such domains. We demonstrate that a higher-order extension of the rippling heuristic is sufficient to plan such proofs
automatically. Accordingly, ordinal arithmetic has been implemented in LambdaClam, a higher order proof planning
system for induction, and standard undergraduate text book problems have been successfully planned with a simple
extension to the standard machinery for higher order rippling and induction. We show the synthesis of a fixpoint
for normal ordinal functions which demonstrates how our automation could be extended to produce more interesting
results that the textbook examples tried so far.

Keywords :

Copyright c
 2001 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

Ordinal Arithmetic: A Case Study for Rippling

in a Higher Order Domain?

Alan Smaill?? and Louise A. Dennis

Division of Informatics, University of Edinburgh, 80 South Bridge, Edinburgh,
EH1 1HN, UK, A.Smaill@ed.ac.uk, louised@dai.ed.ac.uk

Abstract. This paper reports a case study in the use of proof plan-
ning in the context of higher order syntax. Rippling is a heuristic for
guiding rewriting steps in induction that has been used successfully in
the proof planning inductive of proofs using first order representations.
Ordinal arithmetic provides a natural set of higher order examples on
which transfinite induction may be attempted using rippling. Previously
Boyer-Moore style automation could not be applied to such domains.
We demonstrate that a higher-order extension of the rippling heuristic is
sufficient to plan such proofs automatically. Accordingly, ordinal arith-
metic has been implemented in λClam , a higher order proof planning
system for induction, and standard undergraduate text book problems
have been successfully planned with a simple extension to the standard
machinery for higher order rippling and induction. We show the synthe-
sis of a fixpoint for normal ordinal functions which demonstrates how
our automation could be extended to produce more interesting results
that the textbook examples tried so far.

1 Introduction

This paper reports on using λClam to plan proofs about ordinal arithmetic,
making use of higher order features. A standard text book presentation of ordinal
numbers [17] was chosen to provide a basis for a theory of ordinal arithmetic
and the system was used to attempt to plan proofs of examples appearing in a
number of text books [17, 7, 11] with encouraging results. We were also able to
synthesize a fixpoint for a normal function. The emphasis is on the automated
control of proof search, and we aim for both a declarative account of this control,
and the construction of mathematically natural proofs. As far as we know this
is the first time that automation of such proofs has been attempted in a fully
higher-order fashion.

It was found that only minor modifications of the existing proof plan for
induction and theory of rippling were needed to plan these higher order proofs.
This result supports the generality of the rippling approach, and its ability to
generate mathematically natural proofs.
? This research was funded by EPSRC grant Gr/m45030

?? Corresponding Author

This paper begins with an overview of ordinal arithmetic (§2) and proof
planning focusing on the proof plan for induction using the ripple heuristic as
implemented in λClam (§3). We then discuss the modifications we had to make
to this in order to handle ordinal arithmetic (§4) and evaluate our results (§5).
Finally we consider some options for further work (§6).

2 Ordinal Arithmetic: A Higher Order Family of
Problems

First we present the background to the problem area.
Ordinal arithmetic is of interest, among other things, for its use in aiding

termination proofs (see [6]), and in classifying proof-theoretic complexity.
Our presentation in this section follows the standard exposition from set

theory; however, our implemented formalisation does not attempt to build def-
initions from first principles in this way, but adopts various assumptions as a
starting point. We indicate these assumptions later in the paper.

Ordinals can be thought of as (equivalence classes of) well-ordered linear
orders. As such they are a generalisation of the usual natural numbers, but the
arithmetic extends beyond the finite orders. Each ordinal has all smaller ordinals
as members and the membership relation provides the appropriate well-ordering.

Definitions (from [17]) follow:

Definition 1.
εA = {〈x, y〉 : x ∈ A ∧ y ∈ A ∧ x ∈ y}. (1)

Definition 2. A is complete if and only if every member of A is a subset of A.

Definition 3. A is an ordinal if and only if A is complete and εA well-orders
A

Definition 4.
∀α.s(α) = α ∪ {α}. (2)

From this we derive standard constructions of the natural numbers (i.e. 0 = ∅,
1 = {∅}, 2 = {∅, {∅}} etc.). The natural numbers form the finite ordinals, but it
is also possible to have infinite ordinals.

Theorem 1. ∀α : ordl.
⋃

α is an ordinal

We introduce here the type of ordinals, ordl; as is well known, this cannot
correspond to a set.

Definition 5. A limit ordinal is a non-zero ordinal which has no immediate
predecessor.

Given infinite sets, theorem 1 implies the existence of limit ordinals. Among
other things, the set ω of all natural numbers with the usual order is a limit
ordinal.

These observations allow us to develop principles of transfinite induction over
ordinals (of which the following is one of many).

2

Theorem 2 (Principle of Transfinite Induction). Suppose that

1. φ(0);
2. for every α, if φ(α) then φ(s(α));
3. for every limit ordinal γ, if for every β < γ, φ(β) then φ(γ).

Then for every ordinal α.φ(α).

This makes ordinals a credible test case for inductive theorem provers. Op-
erations over limit ordinals are frequently presented as

∪β<αF (β),

for some F of functional type. This makes such proofs naturally higher order.
A standard way of defining functions over the ordinals is using three cases

rather than the two for natural numbers.

F (0) = a, (3)
F (s(x)) = G(x, F (x)), (4)

limit(α) → F (∪β<αβ) = H(α, F � {β : β < α}), (5)

where � is restriction of a function to a specified domain.
To take a particular example, addition for ordinals is defined as follows:

x + 0 = x, (6)
x + s(y) = s(x + y), (7)

limit(α) → x + ∪β<αF (β) = ∪β<α(x + F (β)). (8)

Since for an infinite order, tacking an extra element at the beginning or at
the end can give different results, in the sense of having different properties as
orders, not all the arithmetic identities for natural numbers still hold for ordinals
(commutativity of addition fails for example), and we have to be more careful
about the arguments used for recursive definitions. There is a good account of
the ideas involved in [10].

In brief, ordinal arithmetic presents itself as an area where induction ap-
plies but one which contains higher order aspects. Not all theorems in standard
arithmetic hold for ordinal numbers making it genuinely distinct from the finite
case.

3 Proof Planning

Proof planning was first suggested by Bundy [3]. A proof plan is a proof of a the-
orem, at some level of abstraction, presented as a tree. Traditionally, each node
in this tree is justified by a tactic. The nature of these tactics varies from system
to system. They may be sequences of inference rules, programs for generating
sequences of inferences or a further proof plan at some lower level of abstraction.

3

In principle, while the generation of the proof tree may have involved heuristics
and (possibly) unsound inference steps, it can be justified by executing the tac-
tics attached to the nodes. In practice the generation of the proof tree often
involves the execution of the tactics subsequently used to justify the nodes and
so the distinction between methods and tactics can become blurred.

A proof plan is generated using AI-style planning techniques. The planning
operators used by a proof planner are the proof methods these are defined by
their pre- and post-conditions which are used by the planner to form the proof
plan. Proof methods are therefore partial tactic specifications presented in a
pre- and postcondition fashion. In theory the method’s pre- and postconditions
describe (partially) in some meta-language the proof state before and after the
application of their associated tactic.

The first and most famous proof plan is that for induction with the associated
rippling heuristic. This was implemented in the Clam proof planner. λClam [15]
is a higher order descendant of Clam and was the chosen system for this case
study.

3.1 Proof Planning in λClam

Proof planning in λClam works as follows: A goal is presented to the system.
This goal is a sequent and several of the methods embody standard sequent
calculus inference rules. A plan is formed using methods placed within a method
waterfall . The waterfall determines a general strategy for the process of the
proof and imposes a hierarchy upon the methods. This means that only cer-
tain methods are considered as viable ways to extend the plan at certain points
in a proof. There are two sorts of method; compound and atomic. Compound
methods determine the structure of the waterfall. A compound method is a me-
thodical expression built from methods. Methodicals are analogous to tacticals in
an LCF setting. They specify that, for instance, one method should be applied
then another, or a method should be repeated as many times as possible. Each
compound method thus imposes a structure on its submethods . In this way the
step case method for induction attempts to ripple (rewrite) the induction con-
clusion at least once and does not attempt any other theorem proving method
(thus reducing the search space at this point) and then tries to fertilise (exploit
the induction hypothesis) once it is no longer possible to rewrite the conclusion.
Atomic methods have the normal preconditions and effects (postconditions)1

presentation. If all of an atomic method’s preconditions are satisfied then it is
applied and the effects are used to determine the new goal on which planning
should be attempted.

1 In λClam method postconditions are entirely concerned with generating the next
subgoal (the output) – hence they are frequently called effects to illustrate their
more restricted role.

4

λClam 2 is implemented in λProlog, a higher order, strongly typed, modular
logic programming language. λProlog is used to provide a declarative language
for method precondition descriptions.

3.2 The Proof Plan for Induction and Rippling

Induction is the main proof strategy implemented in λClam . It is defined by a
compound method called induction top meth. The body of this is defined as
follows:

(repeat_meth
(orelse_meth trivial
(orelse_meth allFi
(orelse_meth taut
(orelse_meth sym_eval
(orelse_meth (repeat_meth generalise)

ind_strat
))))))

This is a methodical expression and defines the strategy which is to repeat-
edly apply one of trivial (looking for goals that have become true), allFi (re-
moving higher order universal quantifiers), taut (a tautology checker), sym eval
(symbolic evaluation), repeat meth generalise (generalise away as many com-
mon subterms as possible) and ind strat (the induction strategy proper).

ind strat is itself a compound method. It applies the induction meth meth-
od which performs ripple analysis [5] to choose an induction scheme (from a
selection specified in λClam ’s theories) and produces subgoals for base and step
cases. ind strat leaves the base cases unaltered and so they are tackled by
the next repeat of the induction top meth methodical expression. ind strat
applies the step case method to the remaining cases.

The step case method is again compound and uses four submethods
in sequence, set up ripple (find an initial embedding) then repeat meth
wave method (ripple as much as possible), post ripple (remove the embedding)
and fertilise (exploit the induction hypothesis to solve or rewrite the conclu-
sion). At this point the resulting goal feeds back into the induction top meth
expression which can perform additional simplification or further inductions if
required.

The wave method method embodies the rippling heuristic. Rippling was first
introduced in [4]. We use the theory as presented in [16]. Rippling steps apply
rewrite rules to a target term which is annotated with a skeleton and an em-
bedding that relates the skeleton to the target term (e.g. rippling rewrites an
induction conclusion which has an induction hypothesis embedded in it). In the
present context, we make use of higher order rewriting, in the style of [9]. There
2 Details of λClam can be found at http://dream.dai.ed.ac.uk/systems/lambda-clam/.

The Teyjus implementation can be obtained by emailing dream@dai.ed.ac.uk.

5

is a measure on embeddings and any rewriting step must reduce this embedding
measure (written as <µ). This is a generalisation of the original version rippling
that used annotated wave rules to rewrite terms.

Rippling is terminating [1]. Rippling either moves differences outwards in
the term structure so that they can be cancelled away or inwards so that the
differences surround a universally quantified variable (or sink). If it is possible
to move differences inwards in this way the embedding is said to be sinkable.
The measure on embeddings allows differences that are being moved outwards
to be moved inwards but not vice versa – this is at the heart of the guarantee
of termination.

The wave method method has five preconditions. It finds a rewrite rule that
rewrites the goal. It then checks that there is still an embedding of the skeleton
into the rewritten goal and that this new embedding is less, according to the
embedding measure, than the original embedding. It checks that the embedding
is sinkable and that any conditions for the application rule are trivial. This
is shown in figure 1. The method will backtrack in order to try to satisfy all

Input

ripple goal(H ` G, S, E).

where ripple goal is a triple of a sequent, a skeleton and an embedding of that
skeleton into the goal.

Preconditions

1. The conditional rewrite rule Rule, Cond → X :⇒ Y , applies to G and rewrites it
to G′.

2. There is an embedding E′ that embeds S in G′.
3. E′ <µ E.
4. Cond = True or Cond ∈ H .

Output

ripple goal(H ` G′, S, E′)

Fig. 1. The Wave Method

requirements, and if it is successful returns a new goal.

Embeddings Embeddings are described by a tree data structure. Embedding
trees describe how a skeleton embeds in a term. The nodes in an embedding

6

tree can be viewed as labels on the nodes in the term tree of the skeleton. These
labels contain addresses and directions. The directions are used during rippling
as outlined above. The addresses are the addresses of nodes in the term tree of
the term into which the skeleton is to be embedded. A leaf node in an embedding
tree indicates that the term trees of the skeleton and the target term match below
this point. A node in an embedding tree will appear at a function application
node in the skeleton term tree and indicates that this node is matched to the
function application term in the target term tree at the indicated address.

Example 1. Consider embedding the term x+y into the term s(x)+y. We do this
as in figure 2. The two terms are shown as trees with branches represented by
solid lines. The address of each node is given. The embedding appears between
them as an embedding tree with dashed lines – the address label of the nodes is
also shown. The dotted arrows illustrate how the embedding tree links the two
terms.

s [1]y [2]

x [1,1]

y [2]x [1]

+ + [] []

[]

[2][1,1]

Fig. 2. An Embedding

The embedding tree for this would be (node [] [(leaf [1,1]) (leaf [2])])). This
states that the function application at the top of x+ y (i.e. +) matches with the
node at address [] of s(x) + y (i.e. +), that the argument x matches the sub
term at [1,1] (i.e. the s has been skipped over and x matches x) and so on.

The annotations originally used in rippling are still useful for presentation.
Annotations consist of contexts (expressions with holes) indicated by a wave
front (box) with a directional arrow. The holes in the context are wave holes
(i.e. they are filled with an expression which is underlined). The skeleton is
everything that appears outside wave fronts, or in wave holes. So the above
embedding can be presented as

s(x)
↑

+ y.

7

NB. It is important to remember that the annotations do not actually exist in
the implementation which records instead the skeleton and embedding3. These
annotations are just a presentational convenience.

The whole proof strategy for induction can be seen in figure 3.

Symbolic Evaluation

Wave Method

Ind_strat

Induction_meth

Fertilse

Step_caseOther Methods...

Induction_top_meth

(Base Cases) (Step Cases)

Fig. 3. The Proof Strategy for Induction

4 Proof Planning Ordinal Arithmetic

To implement ordinal arithmetic in λClam we faced a number of tasks.
3 In fact λClam maintains a list of possible embeddings during rippling since there

may be more than one way to embed the induction hypotheses into the conclusion.
For convenience we assume here there is only one.

8

1. Provide a representation of ordinals, including limit ordinals.
2. Provide definitions as rewrite rules for the standard arithmetical definitions.
3. Determine an appropriate small set of support lemmas and provide these as

additional rewrite rules.
4. Provide an induction scheme for transfinite induction.

As part of this last task we found we had to extend our idea of the skeleton
of an embedding.

4.1 Representing Ordinals in λClam

It is simple to supply new constants and types for λClam in an appropriate
module.

We know that 0 is an ordinal and that there are two ways of forming larger
ordinals, either by applying the successor, or taking the union (limit) of a set of
ordinals. We overloaded the types of the 0 and s functions provided in λClam ’s
arithmetic theory4 and so were able to use these as constructors for a type ordl.

We wanted a “common form” for limit ordinals so that we could exploit
pattern matching. The usual presentation of functions defined at limit ordinals
is as a union:

∪β<αFβ.

We chose to use the notation lim (the “limit” of the function F) rather than ∪
in the implementation. In fact, the definitional rewrite rules for plus etc. express
the continuity of the standard operations, with respect to the initial topology;
however, the reader should understand uses of lim in what follows to correspond
to the traditional ∪.

We use limα F to represent limβ<α F (β). In particular we used

α = lim
α

λx.x

for limit ordinals. This is the defining property for limit ordinals5 and it follows
that such ordinals are not of the form s(x).

4.2 Defining the Arithmetical Operators

The first two clauses in the definition of plus already existed in the arithmetic
theory and were “borrowed” from there. NB. that + had been defined with re-
cursion on the second variable as opposed to the first (which is more usual). This
was in anticipation of the case study. λClam allows a user to state exactly which
lemmas and definitions they wish to use and does not type check except where
absolutely necessary allowing rewrite rules to be reused in this way wherever
4 In principle we could have provided new constants instead. This approach allowed us

to “borrow” appropriate existing rewrite rules from the arithmetic theory (provided
they still held for ordinal arithmetic, of course!).

5 0 is not a limit ordinal however so α 6= 0 is added as a hypothesis wherever necessary.

9

they are applicable. This does place a burden on the user, however, to use only a
consistent set of rewrites and to assume as minimal a set of lemmas as possible
(more of this in §4.3).

The statement of continuity of addition is as follows,where F maps ordinals
to ordinals,

x + lim
β<α

F (β) = lim
β<α

(x + F (β)).

This then yields the rewrite rule

X + lim
A

F :⇒ lim
A

λy.(x + F (y))

in λClam . Multiplication and exponentiation were given additional rewrite rules
in the same way.

4.3 Defining Support Lemmas

We attempted to use as minimal a set of consistent support lemmas as possible.
These include a handful of cancellation rules (e.g. (s(X) = s(Y)) :⇒ (X = Y))
and identity ((X = X) :⇒ true) existing in λClam . We also introduced the
following new rewrites that correspond to basic properties of ordinal functions.

lim
α

F = lim
α

G :⇒ (∀o : ordl.o < α ⇒ (Fo) = (Go)), (9)

α 6= 0 ⇒ (lim
α

F = C :⇒ (∀o : ordl.o < α ⇒ (Fo) = C)), (10)

lim
s(α)

λy.y :⇒ α. (11)

These rewrite rules are obliged to observe polarity constraints to ensure sound-
ness.

Finally, we use the following logical equivalence, which gives rise to two
rewrites:

(∀x : τ1.∀y : τ2.Φ(y) ⇒ Ψ(x, y)) ↔ (∀y : τ2.Φ(y) ⇒ ∀x : τ1.Ψ(x, y)). (12)

4.4 An Induction Scheme for Transfinite Induction

The induction scheme used is standard for ordinals, though the condition that
the variable is a limit ordinal in the “new” step case is omitted. Instead we use
pattern matching with our representation of limit ordinals. The new step case,
for an initial goal of the form ∀x : ordl.P (x) is

∀β : ordl.β < α → P (β) ` P (lim
α

λx.x). (13)

The choice of initial embedding here raises some problems. The goal is not
syntactically an expansion of the hypothesis. There is no implication or quantifier
in the conclusion. We adapted the notion of a wild card symbol, ∗, that had been
used in experiments with course of values induction. This allowed us to embed

10

P (∗) in P (limα λx.x) by matching ∗ to limα λx.x. We also added a new case to
set up ripple. In the standard presentation set up ripple adopts the whole
induction hypothesis as the skeleton. In our new case it picked P (∗) as the
skeleton dropping the condition β < α and replacing the universally quantified
β with the wild card.

All this was done in a specialised ordinals module. The basic machinery for
rippling and induction was carried over, once the matching condition above had
been supplied.

5 Evaluation

This machinery was enough to plan automatically the following goals.

∀α : ordl.0 + α = α, (14)
∀α : ordl.α + 1 = s(α), (15)

∀α, β, γ : ordl.(α + β) + γ = α + (β + γ), (16)
∀α : ordl.0.α = 0, (17)
∀α : ordl.1.α = α, (18)
∀α : ordl.α.1 = α, (19)
∀α : ordl.α.2 = α + α, (20)

∀α, β, γ : ordl.α.(β + γ) = α.β + α.γ, (21)
∀α, β, γ : ordl.(α.β).γ = α.(β.γ), (22)

∀α : ordl.α1 = α, (23)
∀α : ordl.1α = 1, (24)
∀α : ordl.α2 = α.α, (25)

∀α, β, γ : ordl.αβ+γ = αβ .αγ , (26)
∀α, β, γ : ordl.αβ.γ = αβγ

. (27)

These were drawn from exercises in three undergraduate text books [17, 7, 11].
They represent all the examples of ordinal arithmetic listed in those books which
use only transfinite induction and the definitions of the arithmetical operators
(i.e. which don’t also use some set theoretic reasoning based on the definitions
of ordinals) except for those involving the order relation.

5.1 The Distributivity of Multiplication over Addition

As a sample of the sort of plan produced by λClam for these examples we present
the plan for the distributivity of multiplication over addition. It is presented in a
natural language way, but each step performed by the proof planner is marked.

Example 2. Goal:

11

λClam performs backwards proof so it starts with the initial goal.

∀α, β, γ : ordl.α.(β + γ) = α.β + α.γ. (28)

induction top meth is applied to this. Only one of its submethods succeeds,
ind strat, because its submethod, induction meth succeeds. Ripple analysis6

suggests the use of induction on γ. This splits the goal into three subgoals; one
base case and two step cases.

Case 1:
∀α, β : ordl.α.(β + 0) = α.β + α.0. (29)

This is a base case and so is returned to induction top meth unaltered.
This time symbolic evaluation succeeds and performs the following sequence of
rewrites:

∀α, β : ordl.α.β = α.β + α.0, (30)
∀α, β : ordl.α.β = α.β + 0, (31)
∀α, β : ordl.α.β = α.β, (32)
∀α, β : ordl.T. (33)

The redundant quantifiers are removed and the case is proved.
Case 2:
This is identical to the step case that would be produced in an attempt to

proof plan the theorem in standard arithmetic.

∀α, β : ordl.α.(β + x) = α.β + α.x `
∀α, β : ordl.α.(β + s(x)) = α.β + α.s(x). (34)

This is annotated and rippled as follows:

∀α, β : ordl.α.(β + s(x)
↑
) = α.β + α. s(x)

↑
, (35)

∀α, β : ordl.α. s(β + x)
↑

= α.β + α. s(x)
↑
, (36)

∀α, β : ordl. α.(β + x) + α
↑

= α.β + α. s(x)
↑
, (37)

∀α, β : ordl. α.(β + x) + α
↑

= α.β + (α.x + α)
↑
. (38)

Weak fertilisation (using the induction hypothesis as a rewrite rule) then returns
the goal

∀α, β : ordl.(α.β + α.γ) + α = α.β + (α.γ + α). (39)

Two generalise steps convert the goal to

∀α, δ, ζ : ordl.(δ + ζ) + α = δ + (ζ + α). (40)
6 Ripple analysis analyses possible rewrites and choses the variable most likely to

promote extensive rewriting.

12

The proof then proceeds with a second induction as for the associativity of plus.
Case 3:
The third case is the “new” step case containing a limit ordinal.

∀δ : ordl.(δ < γ) ⇒ ∀α, β : ordl.α.(β + δ) = α.β + α.δ `
∀α, β : ordl.α.(β + limγ λx.x) = α.β + α. limγ λx.x.

(41)

This is then annotated using α.(β + ∗) as the skeleton. We will use the notation
bxc to indicate when a subterm has matched the wild card7. In this way the
above goal annotates and ripples as follows:

∀α, β : ordl.α.(β + blimγ λx.xc) = α.β + α.blimγ λx.xc. (42)

There are no wave fronts initially only a matching of the wild card. This ripples
to

∀α, β : ordl.α. limγ λx.(β + bxc) ↑
= α.β + α.blimγ λx.xc. (43)

Annotations have now appeared in the term this is because the rewrite rule has
introduced new structure and this is reflected in the embedding that was found.
Note here that we have applied β-reduction in the course of the ripple. λProlog
handles this automatically in the preconditions for the rippling method and no
additional β-reduction rewrite rules had to be supplied.

∀α, β : ordl. limγ λx.α.(β + bxc) ↑
= α.β + α.blimγ λx.xc, (44)

∀α, β : ordl. limγ λx.α.(β + bxc) ↑
= α.β + limγ λx.α.bxc ↑

, (45)

∀α, β : ordl. limγ λx.α.(β + bxc) ↑
= limγ λx.α.β + α.bxc ↑

, (46)

∀α, β, δ : ordl.δ < γ ⇒ α.(β + bδc) = α.β + α.bδc ↑
, (47)

∀α, δ : ordl.δ < γ ⇒ ∀β : ordl.α.(β + bδc) = α.β + α.bδc ↑
, (48)

∀δ : ordl.δ < γ ⇒ ∀α, β : ordl.α.(β + bδc) = α.β + α.bδc ↑
. (49)

This then succeeds by strong fertilisation (i.e. the conclusion is now identical to
the induction hypothesis).

7 For those familiar with rippling this should not be confused with a sink annotation
although its function is similar.

13

5.2 The Synthesis of a Fixpoint for a Normal Function

One of our primary interests in creating λClam was to investigate the use of least-
commitment reasoning in order to perform synthesis proofs. By this we mean
placing uninstantiated meta-variables in proof goals which become instantiated
during the course of the proof and generate an existential witness. We looked at
a simple case where this style of reasoning could be using in the ordinal domain.
This synthesis proof made no use of induction.

Definition 6. A function, φ, from ordinals to ordinals that is strictly increasing
(preserves the order) and continuous is called normal.

Theorem 3. Any normal φ has a fixed point.

∃η.φ(η) = η (50)

The continuity of an increasing function F is expressed by the rewrite

φ(lim
X

(λz.F (z))) :⇒ lim
X

λz.φ(F (z)). (51)

(The corresponding implication is true even when X is not a limit ordinal.)
We were able to synthesize such a fixed point using symbolic evaluation and

the lemmas:

lim
ω

λn.F (s(n)) :⇒ lim
ω

λn.F (n), (52)

λn.F (Fn(A)) :⇒ λn.F s(n)(A) (53)

where the second is simply a defining property of the iteration of function ap-
plication.

The final planning proceeds as follows. Here, capital letters indicate meta-
variables whose instantiation is refined during the planning process.

∃η.φ(η) = η, (54)
φ(E) = E, (55)

lim
X

λz.φ(F (z)) = lim
X

λz.F (z), (56)

lim
X

λz.φs(z)(A) = lim
X

λz.φz(A), (57)

lim
ω

λz.φz(A) = lim
ω

λz.φz(A), (58)

T. (59)

As can be seen the system gradually instantiates the meta-variable, E, as it
rewrites the terms. The plan shows that limω λz.φz(A) is a fixed point; as A is
a meta-variable here, this shows that the proof will hold for any instantiation of
A.

This plan is found with a small but appropriately chosen set of definitions and
lemmas available. We feel it demonstrates the possible applications for higher-
order proof planning systems in the ordinal domain.

14

6 Related and Further Work

Different mechanisations of reasoning about ordinals and cardinals have been
carried out previously. For example, [13] introduces ordinals in the course of
a development of set theory. While providing the foundational assurance of a
development from first principles, this work assumes a fair amount of user inter-
action in building up proofs. A further development in this style is in [14]. Closer
in spirit to our presentation is the introduction of ordinals in the Coq system,
though again user guidance is assumed in building proofs as a new datatype.

The system described in [2] makes use of induction over ordinals to strengthen
the proof system. However, this feature is hidden in the system’s “black box”
treatment used to check termination of user-defined functions, and is not directly
accessible by the user. PVS[12] also contains a construction of the ordinals up
to ε0 and a well-foundedness proof for the associated order based on the devel-
opment in ACL2.

There are a number of extensions we would like to make to this case study.
At a basic level we should like to include definitions for sums and products as
presented in [17] and attempt to plan theorems with them. We should also like
to port the work on transitivity from Clam to λClam in order to plan theorems
about the order on ordinals.

Moving on from this there are a number of more challenging theorems (as
illustrated by our trial synthesis of a fixed point for a continuous function) to
which our theory could be extended and which we believe would be a fruitful
area of study for mechanized higher order proof.

We would also like to generalise our notion of a wild card (possibly by re-
examining examples using course of values induction) so that instead of being
a special case for handling the ordinal induction scheme it became a general
addition to the theory of rippling.

7 Conclusion

We have chosen to examine ordinal arithmetic as a test case for the extension of
the ideas of rippling and proof planning in a higher order setting. Our aim was
to maintain the natural higher-order presentation of the ordinals while retaining
full automation of the proof generation process.

We had to extend our notion of embedding to include skeletons that contained
wild cards that could match any term. We anticipate that this extension may
prove to have wider applicability. We were greatly helped in our case study by
the higher order features built into λProlog which removed the need for explic-
itly stating β-reduction as a rewrite rule and allowed side-conditions preventing
variable capture to be left to the underlying language to handle.

With a small amount of theory building and the above mentioned exten-
sion to rippling in place we were able to successfully plan standard undergrad-
uate textbook examples and exercises. We were also able to demonstrate how

15

proof planning, in particular least commitment devises such as the use of meta-
variables, could have a part to play in the mechanisation of proof theoretic results
in the ordinal domain. These results were confirmation that λClam can naturally
handle higher order examples and that λProlog is a suitable language in which
to express such mathematical concepts.

Thus, we claim to have identified common patterns of proof search that
extend automated inductive theorem proving to the mathematically interesting
higher order domain of ordinals and ordinal functions.

References

1. David Basin and Toby Walsh. A calculus for and termination of rippling. Journal
of Automated Reasoning, 16(1–2):147–180, 1996.

2. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
1988. Perspectives in Computing, Vol 23.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and
R. Overbeek, editors, 9th International Conference on Automated Deduction, pages
111–120. Springer-Verlag, 1988. Longer version available from Edinburgh as DAI
Research Paper No. 349.

4. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling:
A heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.
Also available from Edinburgh as DAI Research Paper No. 567.

5. Alan Bundy. The automation of proof by mathematical induction. In A. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier., 1998.
Forthcoming.

6. A. Cichon and H. Touzet. An ordinal calculus for proving termination in term
rewriting. In Springer, editor, Proceedings of CAAP’96, Coll. on Trees in Algebra
and Programming, number 1059 in Lecture Notes in Computer Science, 1996.

7. Herbert B. Enderton. Elements of Set Theory. Academic Press, 1977.
8. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS : an interactive mathe-

matical proof system. Journal of Automated Reasoning, 9(11):213–248, 1993.
9. A. Felty. A logic programming approach to implementing higher-order term rewrit-

ing. In L-H Eriksson et al., editors, Second International Workshop on Extensions
to Logic Programming, volume 596 of Lecture Notes in Artificial Intelligence, pages
135–61. Springer-Verlag, 1992.

10. P. Halmos. Naive Set Theory. Van Nostrand, Princeton, NJ, 1960.
11. A. G. Hamilton. Numbers, sets and axioms: the apparatus of mathematics. Cam-

bridge University Press, 1982.
12. S. Owre, J. M. Rushby, and N. Shankar. PVS : An integrated approach to speci-

fication and verification. Tech report, SRI International, 1992.
13. L.C. Paulson. Set theory for verification: II. induction and recursion. Journal of

Automated Reasoning, 15:353–389, 1995.
14. L.C. Paulson and K. Grabczewski. Mechanizing set theory: cardinal arithmetic

and the axiom of choice. Journal of Automated Reasoning, pages 291–323, 1996.
15. J.D.C Richardson, A. Smaill, and Ian Green. System description: proof planning

in higher-order logic with lambdaclam. In Claude Kirchner and Hélène Kirch-
ner, editors, 15th International Conference on Automated Deduction, volume 1421
of Lecture Notes in Artificial Intelligence, pages 129–133, Lindau, Germany, July
1998.

16

16. Alan Smaill and Ian Green. Higher-order annotated terms for proof search. In
Joakim von Wright, Jim Grundy, and John Harrison, editors, Theorem Proving in
Higher Order Logics: 9th International Conference, TPHOLs’96, volume 1275 of
Lecture Notes in Computer Science, pages 399–414, Turku, Finland, 1996. Springer-
Verlag. Also available as DAI Research Paper 799.

17. P. Suppes. Axiomatic Set Theory. Van Nostrand, Princeton, NJ, 1960.

17

