
T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Laboratory for Foundations of Computer Science

Learning Inequated Range Restricted Horn Expressions

by

Marta Arias, Roni Khardon

Informatics Research Report EDI-INF-RR-0011

Division of Informatics March 2000
http://www.informatics.ed.ac.uk/

Learning Inequated Range Restricted Horn Expressions

Marta Arias, Roni Khardon

Informatics Research Report EDI-INF-RR-0011

DIVISION of INFORMATICS
Laboratory for Foundations of Computer Science

March 2000

Abstract :
A learning algorithm for the class of inequated range restricted Horn expressions is presented and proved correct.

The main property of this class is that all the terms in the conclusion of a clause appear in the antecedent of the clause,
possibly as subterms of more complex terms. And every clause includes in its antecedent all inequalities possible
between all terms appearing in it. The algorithm works within the framework of learning from entailment, where the
goal is to exactly identify some pre-fixed and unknown expression by making questions to membership and equivalence
oracles.

Keywords : computational learning theory, Horn expressions, least general generalisation, learning from entailment

Copyright c
 2000 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

Learning Inequated Range Restricted Horn Expressions∗

Marta Arias
Division of Informatics
University of Edinburgh
marta@dcs.ed.ac.uk

Roni Khardon
Division of Informatics
University of Edinburgh
roni@dcs.ed.ac.uk

Abstract. A learning algorithm for the class of inequated range restricted Horn expressions is presented and

proved correct. The main property of this class is that all the terms in the conclusion of a clause appear in the

antecedent of the clause, possibly as subterms of more complex terms. And every clause includes in its antecedent

all inequalities possible between all terms appearing in it. The algorithm works within the framework of learning

from entailment, where the goal is to exactly identify some pre-fixed and unknown expression by making questions

to membership and equivalence oracles.

1 Introduction

This paper considers the problem of learning an unknown first order expression1 T from examples
of clauses that T entails or does not entail. This type of learning framework is known as learning
from entailment. A great deal of work has been done in this learning setting. For example, [FP93]
formalised learning from entailment using equivalence queries and membership queries in the study
of learnability of propositional Horn expressions. Generalising this result to the first order setting
is of clear interest. Learning first order Horn expressions has become a fundamental problem
in the field of Inductive Logic Programming (see [MR94] for a survey). This field has produced
several systems that are able to learn in the first order setting using equivalence and membership
entailment queries. Among these are, for example, MIS [Sha83, Sha91] and CLINT [DRB92].

A learning algorithm for the class of inequated range restricted Horn expressions is presented.
The main property of this class is that all the terms in the conclusion of a clause appear in the
antecedent of the clause, possibly as subterms of more complex terms. And every clause includes
in its antecedent all inequalities possible between all terms appearing in it. The paper shows
that small modifications to the algorithm and proof of [AK00] yield the learning result. Further
background and related work appear in [Ari97, RT98, RS98, MF92, Kha99a, Kha99b].

The rest of the paper is organised as follows. Section 2 gives some preliminary definitions. The
learning algorithm is presented in Section 3 and proved correct in Section 4.

2 Preliminaries

2.1 Inequated Range Restricted Horn Expressions

We consider a subset of the class of universally quantified expressions in first order logic. The
learning problem assumes a pre-fixed known and finite signature of the language. This signature S
consists of a finite set of predicates P and a finite set of functions F , both predicates and functions

∗This work was partly supported by EPSRC Grant GR/M21409.
1The unknown expression that has to be identified is commonly referred to as target expression.

1

with their associated arity. Constants are functions with arity 0. A set of variables x1, x2, x3, ...
is used to construct expressions.

Definitions of first order languages can be found in standard texts ([Llo87]). Here we briefly
introduce the necessary constructs. A variable is a term of depth 0. If t1, ..., tn are terms, each of
depth at most i and one with depth precisely i and f ∈ F is a function symbol of arity n, then
f(t1, ..., tn) is a term of depth i + 1.

An atom is an expression p(t1, ..., tn) where p ∈ P is a predicate symbol of arity n and t1, ..., tn
are terms. An atom is called a positive literal. A negative literal is an expression ¬l where l is a
positive literal. An inequality literal or inequation is a literal of the form t1 6= t2, where t1, t2 are
terms.

Let s be any conjunction of atoms and inequations. Then, sp denotes the conjunction of atoms in
s and s 6= the conjunction of inequalities in s. That is s = sp∧s6=. We say s is completely inequated
if s 6= contains all inequalities between terms in sp.

A clause is a disjunction of literals where all variables are taken to be universally quantified. A
Horn clause has at most one positive literal and an arbitrary number of negative literals. A Horn
clause ¬p1 ∨ ... ∨ ¬pn ∨ pn+1 is equivalent to its implicational form p1 ∧ ... ∧ pn → pn+1. We call
p1 ∧ ... ∧ pn the antecedent and pn+1 the consequent of the clause.

A Horn clause is said to be definite if it has exactly one positive literal. A range restricted Horn
clause is a definite Horn clause in which every term appearing in its consequent also appears
in its antecedent, possibly as a subterm of another term. A range restricted Horn expression is
a conjunction of range restricted Horn clauses. An inequated range restricted Horn clause is a
range restricted Horn clause that includes in its antecedent all possible inequations between terms
appearing in the non-inequational literals. An inequated range restricted Horn expression is a
conjunction of inequated range restricted Horn clauses.

The truth value of first order expressions is defined relative to an interpretation I of the predicates
and function symbols in the signature S. An interpretation2 I includes a domain D which is a
finite set of elements. For each function f ∈ F of arity n, I associates a mapping from Dn to D.
For each predicate symbol p ∈ P of arity n, I specifies the truth value of p on n-tuples over D.
The extension of a predicate in I is the set of positive instantiations of it that are true in I.

Let p be an atom, I an interpretation and θ a mapping of the variables in p to objects in I. The
ground positive literal p · θ is true in I iff it appears in the extension of I. A ground negative
literal is true in I iff its negation is not. A ground inequality literal t · θ 6= t′ · θ is true iff t · θ and
t′ · θ are mapped into a different object of I.

A Horn clause C = p1 ∧ ... ∧ pn → pn+1 is true in a given interpretation I, denoted I |= C iff for
any variable assignment θ (a total function from the variables in C into the domain elements of
I), if all the literals in the antecedent p1θ, ..., pnθ are true in I, then the consequent pn+1θ is also
true in I. A Horn expression T is true in I, denoted I |= T , if all of its clauses are true in I. The
expressions T is true in I, I satisfies T , I is a model of T , and I |= T are equivalent.

Let T1, T2 be two Horn expressions. We say that T1 implies T2, denoted T1 |= T2, if every model
of T1 is also a model of T2.

2.2 The Learning Model

In this paper we consider the model of exact learning from entailment, that was formalised by
[FP93] in the propositional setting. In this model examples are clauses. Let T be the target
expression, H any hypothesis presented by the learner and C any clause. An example C is
positive for a target theory T if T |= C, otherwise it is negative. The learning algorithm can make

2Also called structure or model.

2

two types of queries. An Entailment Equivalence Query (EntEQ) returns “Yes” if H = T and
otherwise it returns a clause C that is a counter example, i.e., T |= C and H 6|= C or vice versa.
For an Entailment Membership Query (EntMQ), the learner presents a clause C and the oracle
returns “Yes” if T |= C, and “No” otherwise. The aim of the learning algorithm is to exactly
identify the target expression T by making queries to the equivalence and membership oracles.

2.3 Some definitions

Definition 1 (Multi-clause) A multi-clause is a pair of the form [s, c], where both s and c
are sets of literals such that s ∩ c = ∅. s is the antecedent of the multi-clause and c is the
consequent. Both are interpreted as the conjunction of the literals they contain. Therefore,
the multi-clause [s, c] is interpreted as the logical expression

∧
b∈c s → b. An ordinary clause

C = sc → bc corresponds to the multi-clause [sc, {bc}].

Definition 2 (Implication relation) We say that a logical expression T implies a multi-clause
[s, c] if it implies all of its single clause components. That is, T |= [s, c] iff T |= ∧

b∈c s → b.

Definition 3 (Correct multi-clause) A multi-clause [s, c] is said to be correct w.r.t an expres-
sion T if for every literal b ∈ c, T |= s → b. That is, T |= [s, c].

Definition 4 (Exhaustive multi-clause) A multi-clause [s, c] is said to be exhaustive w.r.t an
expression T if every literal b such that T |= s → b is included in c.

Definition 5 (Full multi-clause) A multi-clause is said to be full w.r.t an expression T if it is
correct and exhaustive w.r.t. T .

Definition 6 (Size of a multi-clause) The size of a multi-clause is defined as:

size([s, c]) = |s|+ variables(s) + 2 · functions(s),

where |·| refers to the number of literals, variables(·) to the number of occurrences of variables
and functions(·) to the number of occurrences of functions symbols.

Definition 7 (Covering multi-clause) A multi-clause [s, c] covers a Horn clause st → bt if
there is a mapping θ from variables in st into terms in s such that st · θ ⊆ s. Equivalently, we say
that st → bt is covered by [s, c].

Definition 8 (Violating multi-clause) A multi-clause [s, c] violates a Horn clause st → bt if
there is a mapping θ from variables in st into terms in s such that st → bt is covered by [s, c] via
θ and bt · θ ∈ c. Equivalently, we say that st → bt is violated by [s, c].

Definition 9 Let s be any set of atoms. Then ineq(s) = {t 6= t′ | t, t′ are distinct terms in s}.
A set of atoms and inequalities s is completely inequated if s6= = ineq(sp). Similarly, a multi-clause
is completely inequated if its antecedent is.

2.4 Least General Generalisation

Definition 10 (Subsumption) Let s1, s2 be any two sets of literals. We say that s1 subsumes
s2 (denoted s1 ¹ s2) if and only if there exists a substitution θ such that s1 · θ ⊆ s2. We also say
that s1 is a generalisation of s2.

Definition 11 (Selection) A selection of two sets of literals s1 and s2 is a pair of literals (l1, l2)
such that l1 ∈ s1, l2 ∈ s2, and both l1 and l2 have the same predicate symbol, arity and sign.

3

Definition 12 (Least General Generalisation) Let s, s′, s1, s2 be clauses. We say that s is
the least general generalisation (lgg) of s1 and s2 if and only if s subsumes both s1 and s2, and if
there is any other clause s′ subsuming both s1 and s2, then s′ also subsumes s.

• If s1 and s2 are sets of literals,

lgg(s1, s2) = {lgg(l1, l2) | (l1, l2) is a selection of s1 and s2}

• If p is a predicate of arity n,

lgg(p(s1, ..., sn), p(t1, ..., tn)) = p(lgg(s1, t1), ..., lgg(sn, tn))

• If f(s1, ..., sn) and g(t1, ..., tm) are two terms,

lgg(f(s1, ..., sn), g(t1, ..., tm)) = f(lgg(s1, t1), ..., lgg(sn, tn))

if f = g and n = m. Else, it is a new variable x, where x stands for the lgg of that pair of
terms throughout the computation of the lgg of the set of literals.

Figure 1: The lgg algorithm

Plotkin proved in [Plo70] that the lgg of any two sets of literals exists if and only if they have a
selection. Moreover, he gave an algorithm to find it and proved its correctness. The algorithm
appears in Figure 1.

The computation of the lgg generates a table that given two terms, each appearing in one of the
input sets of literals, determines the term to which that pair of terms will be generalised.

Example 1 As an example, consider the following two sets. The symbols a, b, c, 1, 2 stand for
constants, f is a unary function, g is a binary function, x, z are variables and p, q are predicate
symbols of arity 2 and 1, respectively.

• s1 = {p(a, f(b)), p(g(a, x), c), q(a)}
• s2 = {p(z, f(2)), q(z)}
• We compute lgg(s1, s2):

– Selection: p(a, f(b)) with p(z, f(2)).

∗ The terms a− z generate entry [a - z => X].
∗ The terms f(b)− f(2) generate entries [b - 2 => Y], [f(b) - f(2) => f(Y)].

– Selection: p(g(a, x), c) with p(z, f(2)).

∗ The terms g(a, x)− z generate entry [g(a,x) - z => Z].
∗ The terms c− f(2) generate entry [c - f(2) => V].

– Selection: q(a) with q(z).

∗ The terms a− z appear already as an entry of the table, therefore no new entry is
generated.

• lgg(s1, s2) = {p(X, f(Y)), p(Z, V), q(X)}
• The lgg table for it is [a - z => X]

[b - 2 => Y]
[f(b) - f(2) => f(Y)]
[g(a,x) - z => Z]
[c - f(2) => V]

4

1. Set S to be the empty sequence.

2. Set H to be the empty hypothesis.

3. Repeat until EntEQ(H) returns “Yes”:

(a) Let x be the (positive) counterexample received (T |= x and H 6|= x).

(b) Minimise counterexample x - use calls to EntMQ.
Let [sx, cx] be the minimised counterexample produced.

(c) Find the first [si, ci] ∈ S such that there is a basic pairing [s, c] of terms of [si, ci]
and [sx, cx] satisfying:

i. size(s) ¯ size(si)

ii. rhs(s, c) 6= ∅
(d) If such an [si, ci] is found then replace it by the multi-clause [s, rhs(s, c)].

(e) Otherwise, append [sx, cx] to S.

(f) Set H to be
∧

[s,c]∈S {s → b | b ∈ c}.
4. Return H

Figure 2: The learning algorithm

3 The Algorithm

The algorithm keeps a sequence S of representative counterexamples. The hypothesis H is gener-
ated from this sequence, and the main task of the algorithm is to refine the counterexamples in
order to get a more accurate hypothesis in each iteration of the main loop, line 3, until hypothesis
and target expressions coincide.

There are two basic operations on counterexamples that need to be explained in detail. These
are minimisation (line 3b), that takes a counterexample as given by the equivalence oracle and
produces a positive, full counterexample. And pairing (line 3c), that takes two counterexamples
and generates a series of candidate counterexamples. The counterexamples obtained by combina-
tion of previous ones are the candidates to refine the sequence S. These operations are carefully
explained in the following sections 3.1 and 3.2.

The basic structure handled by the algorithm is the full multi-clause w.r.t. the target expression
T . All counterexamples take the form of a full multi-clause. Although the equivalence oracle does
not produce a counterexample in this form, it is converted by calling the procedure rhs. This
happens during the minimisation procedure.

Given a set s of ground literals, its corresponding set c of consequents can be easily found using
the EntMQ oracle. For every literal not in s built up using terms in s we make an entailment
membership query and include it in c only if the answer to the query is “Yes”3. This is done
by the procedure rhs. There are two versions for this procedure, one taking one parameter and
another taking two. If there is only one input parameter, then the set of consequents is computed
trying all possibilities. If a second input parameter is specified, only those literals appearing in
this second set are checked and included in the result if necessary. This second version prevents
from making unnecessary calls to the membership oracle in case we know beforehand that some
literals will not be implied. To avoid unnecessary calls to the oracle, literals in c with terms not
appearing in s will be automatically ruled out. To summarise:

• rhs(s) = {b | b 6∈ s and EndMQ(s → b) = Y es}
• rhs(s, c) = {b | b ∈ c and EndMQ(s → b) = Y es}

3It is sufficient to consider only literals built up from terms appearing in s, since the target expression is range
restricted.

5

3.1 Minimising the counterexample

1. Let x be the counterexample obtained by the EntEQ oracle.

2. Let sx be the set of literals {b | H |= antecedent(x) → b}.
3. Set cx to rhs(sx).

4. Repeat until no more changes are made

• For every functional term t appearing in sx, in decreasing order of weight, do

– Let [s′x, c′x] be the multi-clause obtained from [sx, cx] after substituting all occurrences
of the term f(t) by a new variable xf(t).

– Let [s′′x, c′x] be the multi-clause obtained from [s′x, c′x] after arranging inequalities
so the resulting clause is in fully inequated form.

– If rhs(s′′x, c′x) 6= ∅, then set [sx, cx] to [s′′x, rhs(s′′x, c′x)].

5. Repeat until no more changes are made

• For every term t appearing in sx, in increasing order of weight, do

– Let [s′x, c′x] be the multi-clause obtained after removing from [sx, cx] all those literals
containing t.

– Let [s′′x, c′x] be the multi-clause obtained from [s′x, c′x] after arranging inequalities so
the resulting clause is in fully inequated form.

– If rhs(s′′x, c′x) 6= ∅, then set [sx, cx] to [s′′x, rhs(s′′x, c′x)].

6. Return [sx, cx].

Figure 3: The minimisation procedure

The minimisation procedure has to transform a counterexample clause x as generated by the
equivalence query oracle into a multi-clause counterexample [sx, cx] ready to be handled by the
learning algorithm. The way in which this procedure tries to minimise the counterexample is by
removing literals and generalising terms.

The minimisation procedure constructs first a full multi-clause that will be refined in the following
steps. To do this, all literals implied by antecedent(x) and the clauses in the hypothesis will be
included in the first version of the new counterexample’s antecedent (sx), line 2. This can be done
by forward chaining using the hypothesis’ clauses, starting off with the literals in antecedent(x).
Finally, the consequent of the first version of the new counterexample (cx) will be constructed as
rhs(sx).

Next, we enter the loop in which terms are generalised (line 4). We do this by considering every
term that is not a variable (i.e. constants are also included) one at a time. The way to proceed
is to substitute every occurrence of the term by a new variable, possibly arranging superfluous
inequalities in order to get a fully inequated counterexample. This is done by checking if any of
the proper subterms of the term to be generalised still appears in some non-inequational literal.
If not, then all inequalities including such subterm are removed, otherwise they are kept. Notice
we only need to check inequalities including proper subterms of the generalised term. Then it
is checked whether the multi-clause is still positive. If so, the counterexample is updated to the
new multi-clause obtained. And we continue trying to generalise some other functional terms not
yet considered. The process finishes when there are no terms that can be generalised in [sx, cx].
Note that if some term cannot be generalised, it will stay so during the computation of this loop,
so that by keeping track of the failures, unnecessary computation time and queries can be saved.
Note, too, that terms containing some new created variable need not be checked, because the
order in which terms are checked is from more complex to more simple ones, and if we have some
term containing a new created variable, then this term will have been checked already, when the
internal term had not yet been generalised.

Finally, we enter the loop in which literals are removed (line 5). We do this by considering one
term at a time. We remove every literal containing that term in sx and cx, arrange inequalities as

6

in previous step and check if it is still positive. If so, then the counterexample is updated to the
new multi-clause obtained. And we continue trying to remove more literals that have not been
considered so far. The process finishes when there are no terms that can be dropped in [sx, cx].
Note also that there is a better way to compute step 5 by keeping track of the failures of the check,
so that those failures are never tried twice.

Example 2 This example illustrates the behaviour of the minimisation procedure. f, g stand for
functional symbols of arity 1 and x, y, z for variables. Parentheses in terms are omitted since we
deal with functions of arity 1 only. a, b, c are constants and p, q, r, s are the predicate symbols, all
of arity 1 except for p which has arity 2.

- Target expression T = {[(x 6= y 6= fy), p(x, fy) → r(y)], [(z 6= fz), q(fz) → s(z)]}.
- Hypothesis H = {(x 6= fx 6= ffx), q(ffx) → s(fx)}.
- Counterexample x as given by the EntEQ oracle:

(a 6= b 6= c 6= ga 6= fb 6= fc 6= ffb 6= gfc), p(ga, ffb), q(ffb), r(gfc) → r(fb).

- After step 2:

sx = {(a 6= b 6= c 6= ga 6= fb 6= fc 6= ffb 6= gfc), p(ga, ffb), q(ffb), r(gfc), s(fb)}.

- After step 3: cx = rhs(sx) = {r(fb)}.
- The first version of full counterexample [sx, cx]:

[{(a 6= b 6= c 6= ga 6= fb 6= fc 6= ffb 6= gfc), p(ga, ffb), q(ffb), r(gfc), s(fb)}, {r(fb)}].

- Generalising terms. The list of functional terms is [gfc, ffb, fc, fb, ga, c, b, a].

– Generalise term gfc 7→ x1:
— [s′x, c′x] = [{(a 6= b 6= c 6= ga 6= fb 6= fc 6= ffb 6= x1), p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
— [s′′x, c′x] = [{(a 6= b 6= ga 6= fb 6= ffb 6= x1), p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
— rhs(s′′x, c′x) = {r(fb)} 6= ∅.
— [sx, cx] = [{(a 6= b 6= ga 6= fb 6= ffb 6= x1), p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
— The list of terms still to check is [ffb, fb, ga, b, a].

– Generalise term ffb 7→ x2:
— [s′x, c′x] = [{(a 6= b 6= ga 6= fb 6= x2 6= x1), p(ga, x2), q(x2), r(x1), s(fb)}, {r(fb)}].
— [s′′x, c′x] = [{(a 6= b 6= ga 6= fb 6= x2 6= x1), p(ga, x2), q(x2), r(x1), s(fb)}, {r(fb)}].
— rhs(s′′x, c′x) = ∅.
— [sx, cx] = [{(a 6= b 6= ga 6= fb 6= ffb 6= x1), p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
— The list of terms still to check is [fb, ga, b, a].

– Generalise term fb 7→ x3:
— [s′x, c′x] = [{(a 6= b 6= ga 6= x3 6= fx3 6= x1), p(ga, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
— [s′′x, c′x] = [{(a 6= ga 6= x3 6= fx3 6= x1), p(ga, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
— rhs(s′′x, c′x) = {r(x3)} 6= ∅.
— [sx, cx] = [{(a 6= ga 6= x3 6= fx3 6= x1), p(ga, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
— The list of terms still to check is [ga, a].

– Generalise term ga 7→ x4:
— [s′x, c′x] = [{(a 6= x4 6= x3 6= fx3 6= x1), p(x4, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
— [s′′x, c′x] = [{(x4 6= x3 6= fx3 6= x1), p(x4, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
— rhs(s′′x, c′x) = {r(x3)} 6= ∅.
— [sx, cx] = [{(x4 6= x3 6= fx3 6= x1), p(x4, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
— No more terms to generalise and this loop finishes.

7

- Removing literals. The list of terms is [x1, x3, x4, fx3].

– Drop term x1:
— [s′x, c′x] = [{(x4 6= x3 6= fx3), p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
— [s′′x, c′x] = [{(x4 6= x3 6= fx3), p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
— rhs(s′′x, c′x) = {r(x3)} 6= ∅.
— [sx, cx] = [{(x4 6= x3 6= fx3), p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
— The list of terms still to check is [x3, x4, fx3].

– Drop term x3:
— [s′x, c′x] = [{}, {}].
— [s′′x, c′x] = [{}, {}].
— rhs(s′′x, c′x) = ∅.
— [sx, cx] = [{(x4 6= x3 6= fx3), p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
— The list of terms still to check is [x4, fx3].

– Drop term x4:
— [s′x, c′x] = [{(x3 6= fx3), q(fx3), s(x3)}, {r(x3)}].
— [s′′x, c′x] = [{(x3 6= fx3), q(fx3), s(x3)}, {r(x3)}].
— rhs(s′′x, c′x) = ∅.
— [sx, cx] = [{(x4 6= x3 6= fx3), p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
— The list of terms still to check is [fx3].

– Drop term fx3:
— [s′x, c′x] = [{(x4 6= x3), s(x3)}, {r(x3)}].
— [s′′x, c′x] = [{s(x3)}, {r(x3)}].
— rhs(s′′x, c′x) = ∅.
— [sx, cx] = [{(x4 6= x3 6= fx3), p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
— No more terms to drop and the minimisation is finished.

3.2 Pairings

A crucial process in the algorithm is how two counterexamples are combined into a new one,
hopefully yielding a better approximation of some target clause. The operation proposed here
uses pairings of clauses, based on the lgg (see Section 2.4 in Page 3).

3.2.1 Matchings

We have two multi-clauses, [sx, cx] and [si, ci] that need to be combined. To do so, we generate
a series of matchings between the terms of sx and si, and any of these matchings will potentially
produce the candidate to refine the sequence S, and hence, the hypothesis. A matching is a set
whose elements are pairs of terms tx− ti, where tx ∈ sx and ti ∈ si. If sx contains less terms than
si, then there should be an entry in the matching for every term in sx. Otherwise, there should be
an entry for every term in si. That is, the number of entries in the matching equals the minimum
of the number of distinct terms in sx and si. We only use 1-1 matchings, i.e., once a term has
been included in the matching it cannot appear in any other entry of the matching. Typically, we
denote a matching by the Greek letter σ.

Example 3 Consider:

[sx, cx] = [{(a 6= b), p(a, b)}, {q(a)}] with terms {a, b}
[si, ci] = [{(1 6= 2 6= f(1)), p(f(1), 2)}, {q(f(1))}] with terms {1, 2, f(1)}

The possible matchings are:

8

σ1 = {a− 1, b− 2} σ3 = {a− 2, b− 1} σ5 = {a− f(1), b− 1}
σ2 = {a− 1, b− f(1)} σ4 = {a− 2, b− f(1)} σ6 = {a− f(1), b− 2}

Definition 13 (Extended matching) An extended matching is an ordinary matching with an
extra column added to every entry of the matching (every entry consists of two terms in an
ordinary matching). This extra column contains the lgg of every pair in the matching. The lggs
are simultaneous, that is, they share the same table.

Definition 14 (Legal matching) Let σ be an extended matching. We say σ is legal if every
subterm of some term appearing as the lgg of some entry, also appears as the lgg of some other
entry of σ.

Example 4 The matching σ is {a− c, f(a)− b, f(f(a))− fb, g(f(f(a)))− g(f(f(c)))}.
The extended matching of σ is [a - c => X]

[f(a) - b => Y]
[f(f(a)) - f(b) => f(Y)]
[g(f(f(a))) - g(f(f(c))) => g(f(f(X)))].

The terms appearing in the extension column of σ are {X,Y, f(Y), g(f(f(X)))}. The subterm
f(X) is not included in this set, and it is a subterm of the term g(f(f(X))) appearing in the set.
Therefore, this matching is not legal.

Example 5 The matching σ is {a− c, f(a)− b, f(f(a))− fb}.
The extended matching of σ is [a - c => X]

[f(a) - b => Y]
[f(f(a)) - f(b) => f(Y)]

The terms appearing in the extension column of σ are {X,Y, f(Y)}. All subterms of the terms
appearing in this set are also contained in it, and therefore σ is legal.

Our algorithm considers a more restricted type of matching, thus restricting the number of possible
matchings for any pair of multi-clauses [sx, cx] and [si, ci].

Definition 15 (Basic matching) A basic matching σ is defined for two multi-clauses [sx, cx]
and [si, ci] such that the number of terms in sx is less or equal than the number of terms in si. It
is a 1-1, legal matching such that if entry f(t1, ..., tn)− g(r1, ..., rm) ∈ σ, then f = g, n = m and
ti − ri ∈ σ for all i = 1, ..., n. Notice this is not a symmetric operation, since [sx, cx] is required to
have less distinct terms than [si, ci].

We construct basic matchings given [sx, cx] and [si, ci] in the following way. Notice this operation
is not symmetric, and so is the construction. Consider all possible matchings between the variables
in sx and the terms in si. Complete them by adding the functional terms in sx that are not yet
included in the basic matching in an upwards fashion, beginning with the more simple terms. For
every term f(t1, ..., tn) in sx such that all ti − ri (with i = 1, ..., n) appear already in the basic
matching, add a new entry f(t1, ..., tn) − f(r1, ..., rn). Notice this is not possible if f(r1, ..., rn)
does not appear in si or the term f(r1, ..., rn) has already been used. In this case, we cannot
complete the matching and it is discarded. Otherwise, we continue until all terms in sx appear in
the matching.

Example 6 No parentheses for functions are written.

• sx = {(a 6= x 6= fx), p(a, fx)} with terms {a, x, fx}.
• si = {(a 6= 1 6= 2 6= f1), p(a, f1), p(a, 2)} with terms {a, 1, 2, f1}.
• The basic matchings to consider are:

9

– [x - a]: cannot add [a - a], therefore discarded.

– [x - 1]: completed with [a - a] and [fx - f1].

– [x - 2]: cannot add [fx - f2], therefore discarded.

– [x - f1] cannot add [fx - ff1], therefore discarded.

Let [sx, cx] and [si, ci] be any pair of multi-clauses, [sx, cx] containing k variables and [si, ci]
containing t distinct terms. There are a maximum of tk distinct basic matchings between them,
since we only combine variables of sx with terms in si.

3.2.2 Pairings

1. Let [sx, cx] and [si, ci] be the multi-clauses to be paired.

2. Let TBL be the table produced when computing the lgg of sp
x and sp

i .

3. Let σ be the basic matching between terms of [sx, cx] and [si, ci].

4. Compute the extension of σ, restricted to the table TBL.
If it is not possible to compute the lgg for some pair of terms in σ, then return [∅, ∅].

5. Else, let [s, c] be [ineq(lgg|σ (sp
x, sp

i)) ∪ lgg|σ (sp
x, sp

i), lgg|σ (sp
x, ci) ∪ lgg|σ (cx, sp

i) ∪ lgg|σ (cx, ci)].

6. Return [s, c].

Figure 4: The pairing procedure

We start our explanation of the pairing procedure. This procedure is described in Figure 4. The
input to a pairing is a pair of multi-clauses and a basic matching between the terms appearing
in them. A legal pairing is a pairing for which the input matching is legal. A basic pairing is a
pairing for which the input matching is basic.

The predicate part of the antecedent sp of the pairing is computed as the lgg of sp
x and sp

i restricted
to the matching inducing it. This restriction is quite strong in the sense that, for example, if the
literals p(f(f(1))) and p(f(a)) are included in sp

x and sp
i (respectively), then their lgg p(f(X))

will not be included even if the extended entry [f(1) - a => X] is in the matching. We will only
include it if the extended entry [f(f(1)) - f(a) => f(X)] appears in the matching. Similarly,
suppose p(a) appears in both sp

x and sp
i . Their lgg p(a) will not be included unless the entry [a -

a => a] appears in the matching. The inequated part of the pairing’s antecedent s 6= is computed
as s 6= = ineq(sp), creating thus a fully inequated multi-clause.

To compute the consequent c of the pairing, the union of lgg|σ (sp
x, ci), lgg|σ (cx, sp

i) and lgg|σ (cx, ci)
is computed. Note that in the consequent all those possible couples among {sp

x, cx, sp
i , ci} are

included except sp
x, sp

i , that is in the antecedent and therefore does not have to be in the consequent.
The same lgg table is used as the one used for lgg(sp

x, sp
i). To summarise:

[s, c] = [ineq(lgg|σ (sp
x, sp

i)) ∪ lgg|σ (sp
x, sp

i), lgg|σ (sx, ci) ∪ lgg|σ (cx, si) ∪ lgg|σ (cx, ci)].

Note that when computing any of the lggs, the same table is used. That is, the same pair of
terms will be bound to the same expression in any of the four possible lggs that are computed in
a pairing: lgg|σ (sp

x, sp
i), lgg|σ (sp

x, ci), lgg|σ (cx, sp
i) and lgg|σ (cx, ci).

Example 7 Computation of a pairing’s antecedent.

• sx = {(a 6= x 6= fx), p(a, fx)} with terms {a, x, fx}.
• si = {(a 6= 1 6= 2 6= f1), p(a, f1), p(a, 2)} with terms {a, 1, 2, f1}.
• sp

x = {p(a, fx)} with terms {a, x, fx}.

10

• sp
i = {p(a, f1), p(a, 2)} with terms {a, 1, 2, f1}.

• The lgg of sp
x and sp

i is {p(a, fX), p(a, Y)}.
The lgg table is [a - a => a]

[x - 1 => X]
[fx - f1 => fX]
[fx - 2 => Y]

• From Example 6 we have only one possible basic matching, σ = {x− 1, a− a, fx− f1}.
The extended matching is [x - 1 => X]

[a - a => a]
[fx - f1 => fX]

• The antecedent s = ineq(lgg|σ (sp
x, sp

i)) ∪ lgg|σ (sp
x, sp

i) = {(a 6= X 6= fX), p(a, fX)}

Lemma 1 Let [sx, cx] and [si, ci] be two fully inequated multi-clauses, σ a legal matching and [s, c]
the legal pairing induced by σ. Then there exist θx and θi such that s · θx ⊆ sx and s · θi ⊆ si.

Proof. The legal matching σ includes entries of the form [tx - ti => lgg(tx, ti)], where tx and ti
are terms in sx and si, respectively. We define θx = {lgg(tx, ti) 7→ tx} and θi = {lgg(tx, ti) 7→ ti}
whenever lgg(tx, ti) is a variable. Therefore an entry [tx - ti => lgg(tx, ti)] can be also viewed
as [t · θx - t · θi => t], since the lgg respects the functional structure of terms.

Let p(t) be any literal in sp. Since sp is the result of restricting lgg(sp
x, sp

i) to σ, all terms in t
must appear in the extension of σ. And since σ includes entries [t · θx - t · θi => t], both literals
p(t · θx) = p(t)·θx and p(t · θi) = p(t)·θi appear in sp

x and sp
i , respectively. We conclude sp ·θx ⊆ sp

x

and sp · θi ⊆ sp
i .

Let t 6= t′ be an inequation in s6=. Since s is fully inequated, the terms t and t′ must appear in
some literal in sp, maybe as subterms of some bigger terms. The matching σ is legal and therefore
its extension contains every term (and subterm) appearing in any literal in sp. Therefore, t and t′

appear in the extension of σ. The entries of σ for the two terms t and t′ are [t · θx - t · θi => t]
and [t′ · θx - t′ · θi => t′]. σ is 1-1, thus concluding that t · θx 6= t′ · θx and t · θi 6= t′ · θi. That is,
t · θx and t′ · θx correspond to syntactically different terms in sp

x. Moreover, t · θx and t′ · θx also
appear in literals of sp

x, and since sx is fully inequated, the inequation t · θx 6= t′ · θx appears in
s 6=x . Hence, s6= · θx ⊆ s 6=x . An analogous analysis can be done for s6=i . And we conclude s · θx ⊆ sx

and s · θi ⊆ si. ¥

3.2.3 What matchings do we consider?

One of the key points of our algorithm lies in reducing the number of matchings needed to be
checked by ruling out some of the candidate matchings that do not satisfy some restrictions
imposed. By doing so we avoid testing too many pairings and hence making unnecessary calls to
the oracles. One of the restrictions has already been mentioned, it consists in considering basic
pairings only as opposed to considering every possible matching. This reduces the tt possible
distinct matchings to only tk distinct basic pairings. The other restriction on the candidate
matching consists in the fact that every one of its entries must appear in the lgg table of sp

x and
sp

i , where [sx, cx] and [si, ci] are the multi-clauses to be paired. This is mentioned in line 4 of the
pairing procedure.

4 Proof of correctness

During the analysis, s will stand for the cardinality of P , the set of predicate symbols in the
language; a for the maximal arity of the predicates in P ; k for the maximum number of distinct

11

variables in a clause of T ; t for the maximum number of distinct terms in a clause of T including
constants, variables and functional terms; et for the maximum number of distinct terms in a
counterexample as produced by the equivalence query oracle; m for the number of clauses of the
target expression T .

4.1 Brief description

It is clear that if the algorithm stops, then the returned hypothesis is correct, therefore the proof
focuses on assuring that the algorithm finishes. To do so, a bound is established on the length of
the sequence S. That is, only a finite number of counterexamples can be added to S and every
refinement of an existing multi-clause reduces its size, and hence termination is guaranteed.

To bound the length of the sequence S the following condition is proved. Every element in
S violates some clause of T but no two distinct elements of S violate the same clause of T
(Lemma 25). The bound on the length of S is therefore m, the number of clauses of the target T .

To see that every element in S violates some clause in T , it is shown that all counterexamples in
S are full multi-clauses w.r.t. the target expression T (Lemma 20) and that any full multi-clause
must violate some clause in T (Corollary 7).

The fact that there are no two elements in S violating a same clause in T is proved by induction
on the way S is constructed. Lemma 22 is used in this proof and it constitutes the most important
lemma in our analysis. Lemma 22 states that if a minimised multi-clause [sx, cx] violates some
clause C in T covered by some other full multi-clause [si, ci], then there is a pairing, say [s, c],
considered by the algorithm that is going to replace [si, ci] in S. To show this, a matching σ
is constructed and proved to be legal, basic and not discarded by the pairing procedure. This
establishes that the pairing induced by σ is going to be considered by the learning algorithm. And
it is shown that the conditions needed for replacing [si, ci], namely rhs(s, c) 6= ∅ and size(s) ¯

size(si) are satisfied, and hence [si, ci] is replaced. This, together with Lemma 24 stating that if
a legal pairing violates some clause C, then the clauses that originate the pairing cover the C and
at least one of them violates it, prove that there cannot be two different elements in S violating
the same clause in T .

Once the bound on S is established, we derive our final theorem by carefully counting the number
of queries made to the oracles in every procedure. We proceed now with the analysis in detail.

4.2 Proof of correctness

Definition 16 An inequated range restricted clause s → b is non-trivial if its antecedent is
satisfiable. A multi-clause is non-trivial if its antecedent is satisfiable.

Notice that the only way that a clause can be trivial in our language is by having an inequation
t 6= t in its antecedent.

Lemma 2 Let T be any Horn expression, s → b any non-trivial fully inequated clause and θ any
substitution that does not unify any terms in s. It is the case that if T |= s → b, then T |= s·θ → b·θ
and s · θ → b · θ is non-trivial range restricted clause.

Proof. If s → b is non-trivial and implied by T , then s → b is range restricted since T also is.
The clause s · θ → b · θ is non-trivial, since no unification occurs when applying θ. It also holds
that T |= s · θ → b · θ, and hence s · θ → b · θ must be range restricted. ¥
Our proof will consider clauses such as s → b and clauses derived from these by substitution
(s → b) · θ. We therefore need to make sure that θ does not unify terms t, t′ for which t 6= t′

appears in s. Lemma 2 implies that this is sufficient. We will assume implicitly that clauses

12

involved in the analysis are non-trivial. Notice that by definition any fully inequated clause is
non-trivial.

Lemma 3 Let [s, c] be a completely inequated multi-clause covering some completely inequated
clause st → bt via substitution θ. Then θ does not unify terms of st. That is, there are no two
distinct terms t, t′ in st such that t · θ = t′ · θ.

Proof. The multi-clause [s, c] covers st → bt. That is, st ·θ ⊆ s. Let t, t′ be any two distinct terms
in st. The antecedent st is completely inequated, and hence it contains the inequality t 6= t′. Since
st · θ ⊆ s, it follows that t · θ 6= t′ · θ ∈ s. And s is fully inequated, therefore it will only contain
inequation t · θ 6= t′ · θ if t · θ and t′ · θ are two different terms, i.e. t and t′ are not unified by θ. ¥

Corollary 4 Let T be a completely inequated range restricted Horn expression, st → bt a com-
pletely inequated clause such that T |= st → bt, and [s, c] any non-trivial and correct clause
covering st → bt via some substitution θ. Then, T |= s → bt · θ.

Proof. Both st and s are completely inequated by hypothesis, and θ shows covering of st → bt

by [s, c]. By Lemma 3, we conclude θ is non-unifying for terms in st. Lemma 2 implies T |=
st · θ → bt · θ, since by hypothesis T |= st → bt. We know that st · θ ⊆ s, and hence we conclude
T |= s → bt · θ. ¥

Lemma 5 If [s, c] is a non-trivial positive example for an inequated range restricted Horn expres-
sion T , then there is some clause st → bt of T such that st · θ ⊆ s and bt · θ 6∈ s, where θ is some
substitution mapping variables of st into terms of s. That is, st → bt is covered by [s, c] via θ and
bt · θ 6∈ s.

Proof. Consider the interpretation I whose objects are the different terms appearing in s plus
an additional special object ∗. Let DI be the set of objects in I. Let σ be the mapping from
terms in s into objects in I. The function mappings in I are defined following σ, or ∗ when not
specified. We want I to falsify the multi-clause [s, c]. Therefore, the extension of I, say ext(I),
includes exactly those literals in sp (with the corresponding new names for the terms), that is,
ext(I) = sp · σ, where the top-level terms in sp are substituted by their image in DI given by σ.

It is easy to see that this I falsifies [s, c]. All inequations in s are satisfied because every term is
mapped into a different object in DI . And all atoms in s are also satisfied since ext(I) has been
defined precisely as s interpreted in I. But all literals b ∈ c are not satisfied because s∩ c = ∅ and
hence their interpretation in I does not appear in ext(I).

And since I 6|= [s, c] and T |= [s, c], we conclude that I 6|= T . That is, there is a clause st → bt

in T such that I 6|= C and there is a substitution θ′ from variables in st into domain objects of I
such that sp

t · θ′ ⊆ ext(I), bt · θ′ 6∈ ext(I) and every different term in st is interpreted as a different
object in DI , since s6=t also has to be satisfied. The set st is fully inequated, hence s6=t = ineq(sp

t).

We define θ as θ′ · σ−1. Notice σ is invertible since all the elements in its range are different.
And it can be composed to θ′ since all elements in the range of θ′ are in DI , and the domain of
σ consists precisely of all objects in DI . Notice also that s = ext(I) · σ−1, and this can be done
since the object ∗ does not appear in ext(I).

Property sp
t · θ′ ⊆ ext(I) implies st

t · θ′ · σ−1︸ ︷︷ ︸
θ

⊆ ext(I) · σ−1︸ ︷︷ ︸
sp

, i.e., sp
t · θ ⊆ sp.

The fact that t · θ′ 6= t′ · θ′ for every distinct terms t, t′ of st implies that t · θ′ · σ−1︸ ︷︷ ︸
θ

6= t′ · θ′ · σ−1︸ ︷︷ ︸
θ

,

since every distinct object is mapped into a distinct term of s by σ−1. Hence, s 6=t · θ ⊆ s6= and
therefore st · θ ⊆ s as required.

13

Property bt · θ′ 6∈ ext(I) implies bt · θ′ · σ−1︸ ︷︷ ︸
θ

6∈ ext(I) · σ−1︸ ︷︷ ︸
s

, i.e., bt · θ 6∈ s. ¥

Lemma 6 If a multi-clause [s, c] is positive for some target expression T , s is completely in-
equated, c 6= ∅ and [s, c] is exhaustive w.r.t. T , then some clause of T must be violated by [s, c].

Proof. By Lemma 5, there is a mapping θ such that [s, c] covers some clause st → bt in T and
bt ·θ 6∈ s. T is an inequated range restricted Horn expression, and hence st is completely inequated,
and so is s by hypothesis. st → bt is a clause in T , and T |= st → bt. Using Corollary 4, we
conclude that T |= s → bt · θ.
Since [s, c] is exhaustive, bt · θ 6∈ s and T |= s → bt · θ, the literal bt · θ must be included in c. The
multi-clause [s, c] covers st → bt via θ and bt · θ ∈ c. Therefore, [s, c] violates st → bt via θ. ¥

Corollary 7 If a multi-clause [s, c] is full w.r.t. some target expression T , [s, c] is completely
inequated and c 6= ∅, then some clause of T must be violated by [s, c].

Proof. The conditions of Lemma 6 are satisfied. ¥

Lemma 8 Every minimised counterexample [sx, cx] is full w.r.t. the target expression T .

Proof. To see that the multi-clause is correct it suffices to observe that every time the candidate
multi-clause is updated, the consequent part is computed as the output of the procedure rhs.
Therefore, it must be correct.

The first version of the counterexample [sx, cx] as produced by step 3 of the algorithm is exhaustive
since cx is computed by use of rhs(sx) and all possible consequents are tried out.

We will prove that after generalising a term t the resulting counterexample is still exhaustive.
Let [sx, cx] be the multi-clause before generalising t, [s′x, c′x] the multi-clause after t has been
replaced by the new variable xt and [s′′x, c′x] after inequalities have been arranged. To see that
[s′′x, rhs(s′′x, c′x)] is exhaustive it suffices to see that [s′′x, c′x] is. Let the substitution θt be {t 7→ xt}.
That is:

• [sx, cx] is full by assumption.

• [s′x, c′x] = [sx · θt, cx · θt]. We know that sx = s′x · θ−1
t and c′x = cx · θt, because xt is a new

variable that does not appear in sx.

• [s′′x, c′x] is the clause where inequations containing terms not in s′x
p have been removed from

s′x. We know that s′′x ⊆ s′x, since we obtain s′′x by removing inequations from s′x.

We will now see that any literal b implied by s′′x w.r.t. T is included in c′x, and hence [s′′x, c′x] is
also exhaustive. Suppose, then, that T |= s′′x → b with b 6∈ s′′x and b not being an inequation.
Since s′′x ⊆ s′x we get T |= s′x → b and hence T |= s′x · θ−1

t︸ ︷︷ ︸
sx

→ b · θ−1
t . This is true since θt is non-

unifying, since it only maps variable xt into a term that does not appear anywhere else in s′x (all
its occurrences have been substituted by xt in s′x). Thus, T |= sx → b ·θ−1

t . Also, b ·θ−1
t 6∈ sx since

b 6∈ s′x by assumption. By induction hypothesis, [sx, cx] is full and hence exhaustive, therefore
b · θ−1

t ∈ cx. And hence, b · θ−1
t · θt︸ ︷︷ ︸
b

∈ cx · θt︸ ︷︷ ︸
c′

x

as required.

We will show now that after dropping some term t the multi-clause still remains exhaustive.
Again, let [sx, cx] be the multi-clause before removing t, [s′x, c′x] after removing it and [s′′x, c′x] after
inequalities have been arranged. It is clear that s′′x ⊆ s′x ⊆ sx and c′x ⊆ cx since all have been
obtained by removing literals only. Assume [sx, cx] is full. Suppose T |= s′′x → b. T is range

14

restricted and hence b uses terms in s′′x only. Since s′′x ⊆ sx, we conclude T |= sx → b. The literal
b is not an inequation and does not contain t, therefore b 6∈ sx. The multi-clause [sx, cx] has been
assumed to be exhaustive, and so b ∈ cx. Moreover, b is not removed from cx since only literals
containing t are removed. Therefore, b ∈ c′x as required. ¥

Definition 17 (Positive counterexample) A multi-clause [s, c] is a positive counterexample
for some target expression T and some hypothesis H if T |= [s, c], c 6= ∅ and for all literals b ∈ c,
H 6|= s → b.

Lemma 9 All counterexamples given by the equivalence query oracle are positive w.r.t. the target
T and the hypothesis H.

Proof. Follows from the fact that only correct clauses are included in H, and hence T |= H. ¥

Lemma 10 Every multi-clause [sx, cx] produced by the minimisation procedure is a positive coun-
terexample for the target expression T and for the hypothesis H.

Proof. To prove that [sx, cx] is a positive counterexample we need to prove that T |= [sx, cx],
cx 6= ∅ and for every b ∈ cx it holds that H 6|= sx → b. By Lemma 8, we know that [sx, cx] as
output by the minimisation procedure is full, and hence correct. This implies that T |= [sx, cx].
It remains to show that H does not imply any of the clauses in [sx, cx] and that cx 6= ∅.
Let x be the original counterexample obtained from the equivalence oracle. This x is such
that T |= x but H 6|= x (see Lemma 9). The antecedent of the multi-clause sx is set to be
{b | H |= antecedent(x) → b}. Hence, antecedent(x) ⊆ sx. We know that consequent(x) is not
included in sx because x is a counterexample and hence H 6|= x. The consequent cx is computed as
rhs(sx). We can conclude, then, that consequent(x) ∈ cx because it is implied by and not included
in sx. Therefore, cx 6= ∅. Also, H 6|= [sx, rhs(sx)], since all literals implied by antecedent(x) w.r.t.
H appear in sx, and therefore in rhs(sx) only literals not implied by H appear. Therefore, after
step 3 of the minimisation procedure, the multi-clause [sx, cx] is still a positive counterexample.

Next, we will see that after generalising some functional term t, the multi-clause still remains
a positive counterexample. The multi-clause [sx, cx] is only updated if the consequent part is
nonempty, therefore, all the multi-clauses obtained by generalising will have a nonempty conse-
quent. Let [sx, cx] be the multi-clause before generalising t, [s′x, c′x] after generalising t and [s′′x, c′x]
after arranging inequalities. Assume [sx, cx] is a positive counterexample. Let θt be the substitu-
tion {t 7→ xt}. As in Lemma 8, sx · θt = s′x, c′x = cx · θt, sx = s′x · θ−1

t , c′x · θ−1
t = cx and also

s′′x ⊆ s′x. Suppose by way of contradiction that H |= s′′x → b′, for some b′ ∈ c′x. This implies
H |= s′x → b′ since s′′x ⊆ s′x. Then, H |= s′x · θ−1

t → b′ · θ−1
t . And we get that H |= sx → b′ · θ−1

t .
Note that b′ ∈ c′x implies that b′ · θ−1

t ∈ c′x · θ−1
t︸ ︷︷ ︸

cx

. This contradicts our assumption stating that

[sx, cx] was a counterexample, since we have found a literal in cx implied by sx w.r.t. H. Thus,
the multi-clause [s′′x, c′x] is a counterexample.

Finally, we will show that after dropping some term t the multi-clause still remains a positive
counterexample. As before, the multi-clause [sx, cx] is only updated if the consequent part is
nonempty, therefore, all the multi-clauses obtained by dropping will have a nonempty consequent.
Let [sx, cx] be the multi-clause before removing some of its literals, and [s′x, c′x] after removal of
literals and [s′′x, cx] the multi-clause after arranging inequalities. It is the case that s′′x ⊆ s′x ⊆ sx

and c′x ⊆ cx. It holds that s′′x → b |= s′x → b |= sx → b for any literal b. For all b ∈ cx, it holds
that H 6|= sx → b, and hence H 6|= s′′x → b. Therefore, for all b ∈ c′x it holds that H 6|= s′′x → b and
[s′′x, c′x] is a counterexample. ¥

Lemma 11 Every minimised counterexample is completely inequated.

15

Proof. First we note that the counterexample x produced by the equivalence oracle is completely
inequated. The first version of sx is {b | H |= antecedent(x) → b}. Notice antecedent(x) contains
all inequations, and every literal b included uses terms already appearing in antecedent(x), there-
fore no new inequalities are needed and this first version is completely inequated. After some
term has been generalised, notice that inequalities are arranged in such a way that the new an-
tecedent remains fully inequated, and the same happens when some term is dropped. Therefore,
a minimised counterexample is completely inequated. ¥

Lemma 12 Let [sx, cx] be a multi-clause as generated by the minimisation procedure. If [sx, cx]
violates some clause st → bt of T , then it must be via some substitution θ such that θ is a variable
renaming, i.e., θ maps distinct variables of st into distinct variables of sx only.

Proof. The multi-clause [sx, cx] is violating st → bt, hence there must exist a substitution θ from
variables in st into terms in sx such that st · θ ⊆ sx and bt · θ ∈ cx. We will show that θ must be
a variable renaming.

By way of contradiction, suppose that θ maps some variable v of st into a functional term t of sx

(i.e. v · θ = t). Consider the generalisation of the term t in step 4 of the minimisation procedure.
We will see that the term t should have been generalised and substituted by the new variable xt,
contradicting the fact that the variable v was mapped into a functional term.

Let θt = {t 7→ xt} and [s′x, c′x] = [sx · θt, cx · θt]. Consider the substitution θ · θt. We will see
that [s′x, c′x] violates st → bt via θ · θt. By hypothesis we know that st · θ ⊆ sx. This implies that
st · θ · θt ⊆ sx · θt = s′x. Similarly, bt · θ ∈ cx implies bt · θ · θt ∈ cx · θt = c′x. And hence st → bt is
violated by [s′x, c′x] via θ · θt.

It is left to show that the multi-clause [s′′x, c′x] obtained from [s′x, c′x] still violates st → bt. To
see this, we will use the same substitution θ · θt. To show violation, we have to prove the two
conditions st · θ · θt ⊆ s′′x and bt · θ · θt ∈ c′x. The second condition has been shown already in the
previous paragraph, hence we only need to make sure that st · θ · θt ⊆ s′′x. The sets s′x and s′′x
only differ in that s′′x may contain a few less inequalities than s′x. Therefore, sp

t · θ · θt ⊆ s′′x
p ⊆ s′′x.

To see that s 6=t · θ · θt ⊆ s′′x, suppose t and t′ are any two distinct terms in st, i.e., t 6= t′ ∈ st.
st · θ · θt ⊆ s′x implies t · θ · θt 6= t′ · θ · θt ∈ s′x. st is fully inequated, therefore t and t′ appear in sp

t .
And therefore, t · θ · θt and t′ · θ · θt appear in s′x

p and hence in s′′x
p. s′′x

p is also fully inequated,
therefore t · θ · θt 6= t′ · θ · θt ∈ s′′x. And [s′′x, c′x] violates st → bt, rhs(s′′x, c′x) 6= ∅ and t is generalised.

¥

Lemma 13 Let [sx, cx] be any minimised counterexample with nx distinct terms. And let st → bt

be any clause of T violated by [sx, cx] containing nt distinct terms. Then, nx = nt.

Proof. The multi-clause [sx, cx] violates st → bt. Therefore there is a θ mapping variables in st

showing this violation. By Lemma 11 the multi-clause [sx, cx] is completely inequated and so is
st → bt since it appears in T . By Lemma 3, the substitution θ does not unify terms in st. By
Lemma 12, we know also that every variable of st is mapped into a variable of sx. Therefore, θ
maps distinct variables of st into distinct variables of sx. Therefore, the number of terms in st

equals the number of terms in st ·θ, since there has only been a non-unifying renaming of variables.
Also, st · θ ⊆ sx. We have to check that the remaining literals in sx \ st · θ do not include any term
not appearing in st · θ.
Suppose there is a literal l ∈ sx−st ·θ containing some term, say t, not appearing in st ·θ. Consider
when in step 5 of the minimisation procedure the term t was checked. Let [s′x, c′x] be the clause
obtained after the removal of the literals containing t. Then, st · θ ⊆ s′x because all the literals in
st · θ do not contain t. Also, bt · θ ∈ c′x because it does not either (T is range restricted). That
is, [s′x, c′x] violates st → bt. By a similar argument as in Lemma 12, the multi-clause [s′′x, c′x] also
violates st → bt. And therefore, rhs(s′′x, c′x) 6= ∅ and such a term t cannot exist. We conclude
nt = nx. ¥

16

Corollary 14 Let [sx, cx] be any minimised counterexample containing nx distinct terms. Then
nx ≤ t.

Proof. Follows from the fact that that any nt as in the previous lemma is bounded by t. ¥

Lemma 15 Let [si, ci] be any completely inequated multi-clause covering some clause st → bt of
T . Let ni and nt be the number of distinct terms in si and st, respectively. Then, nt ≤ ni.

Proof. Since [si, ci] covers the clause st → bt, there is a θ s.t. st ·θ ⊆ si. By Lemma 3 , θ does not
unify terms in st. Therefore, any two distinct terms t, t′ of st appear as distinct terms t · θ, t′ · θ
in s. And therefore, si has at least as many terms as st and the result follows. ¥

Corollary 16 Let st → bt be a clause of T with nt distinct terms. Let [sx, cx] be a minimised
counterexample with nx distinct terms such that [sx, cx] violates the clause st → bt. Let [si, ci] be
a multi-clause with ni terms covering the clause st → bt. Then nx ≤ ni.

Proof. By Lemma 13, nx = nt. By Lemma 15, nt ≤ ni, hence nx ≤ ni. ¥

Lemma 17 Let [s, c] be a pairing of two multi-clauses [sx, cx] and [si, ci]. Then the multi-clause
[s, c] is completely inequated.

Proof. Any pairing is completely inequated by construction, since its antecedent s is computed
as ineq(lgg|σ (sp

x, sp
i)) ∪ lgg|σ (sp

x, sp
i). ¥

Lemma 18 Let [sx, cx] and [si, ci] be two completely inequated and full multi-clauses w.r.t. the
target expression T . Let σ be a basic matching between the terms in sx and si that is not rejected by
the pairing procedure. Let [s, c] be the basic pairing of [sx, cx] and [si, ci] induced by σ as computed
in our algorithm. Then the multi-clause [s, rhs(s, c)] is also full w.r.t. T .

Proof. To see that [s, rhs(s, c)] is full w.r.t. T , it suffices to show that [s, c] is exhaustive. That
is, whenever T |= s → b and b 6∈ s, then b ∈ c. Suppose, then, that T |= s → b with b 6∈ s.
By Lemma 1, there exist θx and θi such that s · θx ⊆ sx and s · θi ⊆ si. All s, si and sx are
completely inequated by hypothesis and by Lemma 17. Hence, those inclusions imply that both
θx and θi do not unify terms of s. And it follows from Lemma 2 that T |= s → b implies both
T |= s · θx → b · θx and T |= s · θi → b · θi. Let bx = b · θx and bi = b · θi. Finally, we obtain
that T |= sx → bx and T |= si → bi. By assumption, [sx, cx] and [si, ci] are full, and therefore
bx ∈ sx ∪ cx and bi ∈ si ∪ ci. Also, since the same lgg table is used for all lgg(·, ·) we know that
b = lgg(bx, bi). Therefore b must appear in one of lgg(sx, si), lgg(sx, ci), lgg(cx, si) or lgg(cx, ci).
But b 6∈ lgg(sx, si) since b 6∈ s by assumption.

Note that all terms and subterms in b appear in s. If not, then it could not have been implied by s
w.r.t. T , since T is range restricted and s fully inequated and hence non-trivial. We know that σ
is basic and hence legal, and therefore it contains all subterms of terms appearing in s. Thus, by
restricting any of the lgg(·, ·) to lgg|σ (·, ·), we will not get rid of b, since it is built up from terms
that appear in s and hence in σ. Therefore, b ∈ lgg|σ (sx, ci) ∪ lgg|σ (cx, si) ∪ lgg|σ (cx, ci). Notice
also that b is an atom, and therefore b ∈ lgg|σ (sp

x, ci) ∪ lgg|σ (cx, sp
i) ∪ lgg|σ (cx, ci) = c. ¥

Lemma 19 Every element [s, c] appearing in the sequence S is completely inequated.

Proof. The sequence S is constructed by appending minimised counterexamples or by refining
existing elements with a pairing with another minimised counterexample. Lemma 11 guarantees
that all minimised counterexamples are fully inequated and by Lemma 17, any basic pairing
between fully inequated multi-clauses is also fully inequated. ¥

17

Lemma 20 Every element [s, c] appearing in the sequence S is full w.r.t. the target expression T .

Proof. The sequence S is constructed by appending minimised counterexamples or by refining
existing elements with a pairing with another minimised counterexample. Lemma 8 guarantees
that all minimised counterexamples are full and by Lemma 18, any basic pairing between full
multi-clauses is also full. ¥

Lemma 21 Let [s, c] be any pairing of the two fully inequated multi-clauses [sx, cx] and [si, ci].
Then, it is the case that |s| ≤ |si| and |s| ≤ |sx|.

Proof. From Lemma 1 we know that there are θx and θi for which s · θx ⊆ sx and s · θi ⊆ si.
Moreover, s is fully inequated by Lemma 17, and Lemma 3 guarantees therefore that θx and θi

do not unify terms in s. That is, no literals in sp or s6= are unified and the result follows. ¥

Lemma 22 Let S be the sequence [[s1, c1], [s2, c2], ..., [sk, ck]]. If a minimised counterexample
[sx, cx] is produced such that it violates some clause st → bt in T covered by some [si, ci] of S, then
some multi-clause [sj , cj] will be replaced by a basic pairing of [sx, cx] and [sj , cj], where j ≤ i.

Proof. We will show that if no element [sj , cj], where j < i, is replaced, then the element [si, ci]
will be replaced. We have to prove that there is a basic pairing [s, c] of [sx, cx] and [si, ci] for which
the two properties rhs(s, c) 6= ∅ and size(s) ¯ size(si) hold.

We have assumed that there is some clause st → bt ∈ T violated by [sx, cx] and covered by [si, ci].
Let θ′x be the substitution showing the violation of st → bt by [sx, cx] and θ′i be the substitution
showing the fact that st → bt is covered by [si, ci]. Thus it holds that st · θ′x ⊆ sx, bt · θ′x ∈ cx and
st · θ′i ⊆ si.

We construct a matching σ that includes all entries [t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)] such that
t is a term appearing in st (only one entry for every distinct term of st).

Claim 1 The matching σ as described above is 1-1 and the number of entries equals the minimum
of the number of distinct terms in sx and si.

Proof. Lemma 19 states both si and sx are completely inequated. By Lemma 3, θ′x and θ′i do not
unify terms, and hence the matching σ is 1-1, since it cannot be the case that t · θ′x = t′ · θ′x or
t · θ′i = t′ · θ′i, for any two distinct terms t, t′ in st.

By construction, the number of entries equals the number of distinct terms in st, that by Lemma 13
is the number of distinct terms in sx. And by Lemma 15, [si, ci] contains at least as many terms
as st. Therefore, the number of entries in σ coincides with the minimum of the number of distinct
terms in sx and si (that in this case is guaranteed to be sx). ¤

Claim 2 The matching σ is not discarded.

Proof. Notice that the discarded pairings are those that do not agree with the lgg of sx and si,
but this does not happen in this case, since σ has been constructed precisely using the lgg of some
terms in sx and si. ¤

Claim 3 The matching σ is legal.

Proof. A matching is legal if, by definition, the subterm of any term appearing as the lgg of the
matching, also appears in some other entry of the matching. We will prove it by induction on the
structure of the terms. We prove that if t is a term in st, then the term lgg(t · θ′x, t · θ′i) and all its
subterms appear in the extension of some other entries of σ.

18

Base case. When t = a, with a being some constant. The entry in σ for it is [a - a => a], since
a · θ = a, for any substitution θ if a is a constant and lgg(a, a) = a. The term a has no subterms,
and therefore all its subterms trivially appear as entries in σ.

Base case. When t = v, where v is any variable in st. The entry for it in σ is [v · θ′x - v · θ′i =>
lgg(v · θ′x, v · θ′i)]. By Lemma 12, sx is minimised and v · θ′x must be a variable. Therefore, the lgg
with anything else must also be a variable. Hence, all its subterms appear trivially since there are
no subterms.

Step case. When t = f(t1, ..., tl), where f is a function symbol of arity l and t1, ..., tl its arguments.
The entry for it in σ is

[f(t1, ..., tl) · θ′x - f(t1, ..., tl) · θ′i => lgg(f(t1, ..., tl) · θ′x, f(t1, ..., tl) · θ′x)︸ ︷︷ ︸
f(lgg(t1·θ′

x,t1·θ′
i),...,lgg(tl·θ′

x,tl·θ′
i))

].

The entries [tj · θ′x - tj · θ′i => lgg(tj · θ′x, tj · θ′x)], with 1 ≤ j ≤ l, are also included in σ, since
all tj are terms of st. By the induction hypothesis, all the subterms of every lgg(tj · θ′x, tj · θ′x)
are included in σ, and therefore, all the subterms of lgg(f(t1, ..., tl) · θ′x, f(t1, ..., tl) · θ′x) are also
included in σ and the step case holds. ¤

Claim 4 The matching σ is basic.

Proof. A basic matching is defined only for two multi-clauses [sx, cx] and [si, ci] such that the
number of terms in sx is less or equal than the number of terms in si. Corollary 16 shows that this
is indeed the case. Following the definition, it should be also 1-1 and legal. Claim 1 shows it is 1-1
and by Claim 3 we know it is also legal. It is only left to see that if entry f(t1, ..., tn)−g(r1, ..., rm)
is in σ, then f = g, n = m and tl − rl ∈ σ for all l = 1, ..., n.

Suppose, then, that f(t1, ..., tn) − g(r1, ..., rm) is in σ. By construction of σ all entries are of the
form t · θ′x− t · θ′i. Thus, assume t · θ′x = f(t1, ..., tn) and t · θ′i = g(r1, ..., rm). We also know that θ′x
is a variable renaming, therefore, the term t · θ′x is a variant of t. Therefore, the terms f(t1, ..., tn)
and t are variants. That is, t itself has the form f(t′1, ..., t

′
n), where every t′l is a variant of tl and

t′l · θ′x = tl, where l = 1, ..., n. Therefore, g(r1, ..., rm) = t · θ′i = f(r1 = t′1 · θ′i, ..., rn = t′n · θ′i) and
hence f = g and n = m. We have seen that tl = t′l · θ′x and rl = t′l · θ′i. By construction, σ includes
the entries tl − rl, for any l = 1, ..., n and our claim holds. ¤
It remains to show that properties rhs(s, c) 6= ∅ and size(s) ¯ size(si) are satisfied. Let θx and
θi be the two substitutions defined in Lemma 1. That is, θx = {lgg(t · θ′x, t · θ′i) 7→ t · θ′x} and
θi = {lgg(t · θ′x, t · θ′i) 7→ t · θ′i}, whenever lgg(t · θ′x, t · θ′i) is a variable and t is a term in st. It holds
that s · θx ⊆ sx and s · θi ⊆ si.

Claim 5 rhs(s, c) 6= ∅.

Proof. To see this, it suffices to show that [s, c] violates st → bt. We have to find a substitution
θ such that st · θ ⊆ s and bt · θ ∈ c.

Let θ be the substitution that maps all variables in st to their corresponding expression assigned
in the extension of σ. That is, θ = {v 7→ lgg(v · θ′x, v · θ′i) | v is a variable of st}. Notice that θ is
a variable renaming because θ′x is and the lgg when a variable is involved is also a variable.

• θ ·θx = θ′x. Let v be any variable in st. The substitution θ maps v into lgg(v ·θ′x, v ·θ′i). This
is a variable, say V , since we know θ′x is a variable renaming. The substitution θx contains
the mapping lgg(v · θ′x, v · θ′i)︸ ︷︷ ︸

V

7→ v · θ′x. And v is mapped into v · θ′x by θ · θx.

• θ · θi = θ′i. As in previous property.

19

• st ·θ ⊆ s. Let l be any literal in sp
t and t be any term appearing in l. The matching σ contains

the entry [t ·θ′x - t ·θ′i => lgg(t ·θ′x, t ·θ′i)], since t appears in st. The substitution θ contains
{v 7→ lgg(v · θ′x, v · θ′i)} for every variable v appearing in st, therefore t · θ = lgg(t · θ′x, t · θ′i).
And lgg(t ·θ′x, t ·θ′i) appears in σ. The literal l ·θ appears in lgg(st ·θ′x, st ·θ′i) and therefore in
lgg(sx, si) since st ·θ′x ⊆ sx, st ·θ′i ⊆ si and θ = {v 7→ lgg(v · θ′x, v · θ′i) | v is a variable of st}.
Also, l · θ appears in lgg|σ (sp

x, sp
i) = sp ⊆ s since we have seen that any term in l · θ appears

in σ. Hence, l · θ ∈ s and sp
t · θ ⊆ s. Let t 6= t′ be any inequation in st. The set st is

fully inequated, and therefore, t, t′ appear in some non-equational literals l, l′ in st. And
therefore, l · θ, l′ · θ appear in s. Notice t · θ and t′ · θ are distinct terms since θ is a variable
renaming. By construction, s is fully inequated and therefore t · θ 6= t′ · θ ∈ s6= ⊆ s. We have
seen that both inequational literals and atoms in st · θ appear in s and hence st · θ ⊆ s as
required.

• bt · θ 6∈ s. Suppose it is not the case and bt · θ ∈ s. This implies that bt · θ · θx ∈ s · θx ⊆ sx.
Since θ′x = θ · θx, it follows that bt · θ′x ∈ sx. This contradicts the fact that [sx, cx] violates
st → bt via θ′x.

Since [s, c] is full, T |= st · θ → bt · θ, st · θ ⊆ s, θ is non-unifying and bt · θ 6∈ s we conclude that
bt · θ ∈ c. And rhs(s, c) 6= ∅ as required. ¤

Claim 6 size(s) ¯ size(si).

Proof. By way of contradiction, suppose size(s) ≥ size(si). By Lemma 21, we know that |s| ≤ |si|,
therefore size(s) ≤ size(si) since the lgg never substitutes a term by one of greater weight.
Thus, it can only be that size(s) = size(si) and |s| = |si| (if |s| < |si|, then we would also get
size(s) < size(si) for the same reason as before). Remember that θi is the substitution for which
s · θi ⊆ si. We conclude that θi is a variable renaming, since the sizes of s and si are equal and
therefore s·θi = si, and hence sx contains a variable renaming of si. That is, there is a substitution
θ̂ such that si · θ̂ ⊆ sx, θx = θi · θ̂ and θ′x = θ′i · θ̂. Consider the literal bt · θ′i. We disprove the
following two cases:

• bt · θ′i ∈ si. Since θ′i = θ · θi and s · θi = si, we obtain bt · θ · θi ∈ s · θi. The substitution θi

is just a variable renaming, hence bt · θ ∈ s. But bt · θ 6∈ s, since by the proof of Claim 5 we
know that bt · θ ∈ c and s ∩ c = ∅.

• bt · θ′i 6∈ si. By Lemma 20, the multi-clause [si, ci] is full and therefore bt · θ′i ∈ ci. Hence,
the clause si → bt · θ′i is included in H. This implies that H |= si → bt · θ′i. The substitution
θ̂ is a variable renaming and hence H |= si · θ̂ → bt · θ′i · θ̂︸︷︷︸

θ′
x

and since si · θ̂ ⊆ sx, we obtain

that H |= sx → bt · θ′x. But since bt · θ′x ∈ cx, this contradicts the fact that [sx, cx] is a
counterexample.

¤
To summarise, we have constructed a 1-1, legal and basic matching σ that induces the legal pairing
[s, c] that will be considered by the algorithm and for which the two properties needed for refining
the multi-clause [si, ci] ∈ S hold. That is, [si, ci] is refined as required. ¥

Corollary 23 If a counterexample [sx, cx] is appended to S, it is because there is no element in
S violating a clause in T that is also violated by [sx, cx].

Proof. Were it the case, then by Lemma 22 the first element sharing some target clause would
have been replaced instead of being appended. ¥

20

Lemma 24 Let [s1, c1] and [s2, c2] be two completely inequated full multi-clauses. And let [s, c] be
any legal pairing between them. If [s, c] violates a fully inequated clause st → bt, then the following
holds:

1. Both [s1, c1] and [s2, c2] cover st → bt.

2. At least one of [s1, c1] or [s2, c2] violates st → bt.

Proof. By assumption, st → bt is violated by [s, c], i.e., there is a θ such that st ·θ ⊆ s and bt ·θ ∈ c.
Let σ be the 1-1 legal matching inducing the pairing. By Lemma 1, there exist substitutions θ1

and θ2 such that s · θ1 ⊆ s1 and s · θ2 ⊆ s2.

We claim that [s1, c1] and [s2, c2] cover st → bt via θ · θ1 and θ · θ2, respectively. Notice that
st · θ ⊆ s, and therefore st · θ · θ1 ⊆ s · θ1 ⊆ s1. The same holds for s2.

By hypothesis, bt · θ ∈ c and c is defined to be lgg|σ (sp
1, c2) ∪ lgg|σ (c1, s

p
2) ∪ lgg|σ (c1, c2). Observe

that all these lggs share the same table, so the same pairs of terms will be mapped into the same
expressions. Observe also that the substitutions θ1 and θ2 are defined according to this table, since
the legal matching agrees with the lgg table. That is, if any literal l ∈ lgg|σ (c1, ·), then l · θ1 ∈ c1.
Equivalently, if l ∈ lgg|σ (·, c2), then l · θ2 ∈ c2. Therefore we get that if bt · θ ∈ lgg|σ (c1, ·), then
bt · θ · θ1 ∈ c1 and if bt · θ ∈ lgg|σ (·, c2), then bt · θ · θ2 ∈ c2. Now, observe that in any of the
three possibilities for c, one of c1 or c2 is included in the lgg|σ . Thus it is the case that either
bt · θ · θ1 ∈ c1 or bt · θ · θ2 ∈ c2. Since both [s1, c1] and [s2, c2] cover st → bt, one of [s1, c1] or [s2, c2]
violates st → bt. ¥

Lemma 25 (Invariant) Every time the algorithm is about to make an entailment equivalence
query, it is the case that every multi-clause in S violates at least one of the clauses of T and every
clause of T is violated by at most one multi-clause in S. In other words, it is not possible that two
distinct multi-clauses in S violate the same clause in T simultaneously.

Proof. To see that every multi-clause [s, c] ∈ S violates at least one clause of T , it suffices to
observe that by Lemma 20 all counterexamples included in S are full positive multi-clauses with
c 6= ∅. We can apply Corollary 7, and conclude that [s, c] violates some clause of T .

To see that no two different multi-clauses in S violate the same clause of T , we proceed by induction
on the number of iterations of the main loop in line 3 of the learning algorithm. In the first loop
the lemma holds trivially (there are no elements in S). By the induction hypothesis we assume
that the lemma holds before a new iteration of the loop. We will see that after completion of that
iteration of the loop the lemma must also hold. Two cases arise.

The minimised counterexample [sx, cx] is appended to S. By Corollary 23, we know that [sx, cx]
does not violate any clause in T also violated by some element [si, ci] in S. This, together with
the induction hypothesis, assures that the lemma is satisfied in this case.

Some [si, ci] is replaced in S. We denote the updated sequence by S′ and the updated element in
S′ by [s′i, c

′
i]. We have to prove that the lemma holds for S′ as updated by the learning algorithm.

Assume it does not. The only possibility is that the new element [s′i, c
′
i] violates some clause of T ,

say st → bt also violated by some other element [sj , cj] of S′, with j 6= i. The multi-clause [s′i, c
′
i]

is a basic pairing of [sx, cx] and [si, ci], and hence it is also legal. Applying Lemma 24 we conclude
that one of [sx, cx] or [si, ci] violates st → bt.

Suppose [si, ci] violates st → bt. This contradicts the induction hypothesis, since both [si, ci] and
[sj , cj] violate st → bt in T .

Suppose [sx, cx] violates st → bt. If j < i, then [sx, cx] should have refined [sj , cj] instead of [si, ci]
(Lemma 22). Therefore, j > i. But then we are in a situation where [sj , cj] violates a clause
also covered by [si, ci]. By repeated application of Lemma 24, all multi-clauses in position i cover
st → bt during the history of S. Consider the iteration in which [sj , cj] first violated st → bt. This

21

could have happened by appending the counterexample [sj , cj], which contradicts Lemma 22 since
[si, ci] or an ancestor of it was covering st → bt but was not replaced. Or it could have happened
by refining [sj , cj] with a pairing of a counterexample violating st → bt. But then, by Lemma 22
again, the element in position i should have been refined, instead of refining [sj , cj]. ¥

Corollary 26 The number of elements in S is bounded by m, the number of clauses in T .

Proof. Suppose there are more than m elements in S. Since every [s, c] in S violates some clause
in T , then it must be the case that two different elements in S violate the same clause of T , since
there are only m clauses in T , contradicting Lemma 25. ¥

Lemma 27 Let [sx, cx] be any minimised counterexample. Then, |sx|+ |cx| ≤ sta.

Proof. By Corollary 14 there are a maximum of t terms in a minimised counterexample. And
there are a maximum of sta different literals built up from t terms. ¥

Lemma 28 The algorithm makes O(msta) equivalence queries.

Proof. The sequence S has at most m elements. After every refinement, either one literal is
dropped or some term is substituted by one of less weight. This can happen msta (to drop
literals) plus mt (to replace terms) times, that is m(t + sta). We need m extra calls to add all the
counterexamples. That makes a total of m(1 + t + sta). That is O(msta). ¥

Lemma 29 The algorithm makes O(sea+1
t) membership queries in any run of the minimisation

procedure.

Proof. To compute the first version of full multi-clause we need to test the sea
t possible literals

built up from et distinct terms appearing in sx. Therefore, we make sea
t initial calls.

Next, we note that the first version of cx has at most sea
t literals. The first loop (generalisation

of terms) is executed at most et times, one for every term appearing in the first version of sx. In
every execution, at most |cx| ≤ sea

t membership calls are made. In this loop there are a total of
sea+1

t calls.

The second loop of the minimisation procedure is also executed at most et times, one for every
term in sx. Again, since at most sea

t calls are made in the body on this second loop, the total
number of calls is bounded by sea+1

t .

This makes a total of sea
t + 2sea+1

t , that is O(sea+1
t). ¥

Lemma 30 Given a matching, the algorithm makes at most sta membership queries in the com-
putation of any basic pairing.

Proof. The number of literals in the consequent c of a pairing of [sx, cx] and [si, ci] is bounded
by the number of literals in sx plus the number of literals in cx. By Lemma 27, this is bounded
by sta. ¥

Lemma 31 The algorithm makes O(ms2taea+1
t + m2s2t2a+k) membership queries.

Proof. The main loop is executed as many times as equivalence queries are made. In every loop,
the minimisation procedure is executed once and for every element in S, a maximum of tk pairings
are made.

That is: smta︸ ︷︷ ︸
#iterations

×{ sea+1
t︸ ︷︷ ︸

minim.

+ m︸︷︷︸
|S|

· tk︸︷︷︸
#pairings

· sta︸︷︷︸
pairing

} = O(ms2taea+1
t + m2s2t2a+k). ¥

22

Theorem 32 The algorithm exactly identifies every range restricted Horn expression making
O(msta) equivalence queries and O(ms2taea+1

t + m2s2t2a+k) membership queries. The running
time is polynomial in the number of membership queries.

Proof. Follows from Lemmas 28 and 31. Notice that the membership calls take most of the
running time. ¥

References

[AK00] M. Arias and R. Khardon. A New Algorithm for Learning Range Restricted Horn
Expressions. Technical Report EDI-INF-RR-0010, Division of Informatics, University
of Edinburgh, March 2000.

[Ari97] Hiroki Arimura. Learning acyclic first-order Horn sentences from entailment. In Proceed-
ings of the International Conference on Algorithmic Learning Theory, Sendai, Japan,
1997. Springer-Verlag. LNAI 1316.

[DRB92] L. De Raedt and M. Bruynooghe. An overview of the interactive concept learner and
theory revisor CLINT. In S. Muggleton, editor, Inductive Logic Programming. Academic
Press, 1992.

[FP93] M. Frazier and L. Pitt. Learning from entailment: An application to propositional Horn
sentences. In Proceedings of the International Conference on Machine Learning, pages
120–127, Amherst, MA, 1993. Morgan Kaufmann.

[Kha99a] R. Khardon. Learning function free Horn expressions. Machine Learning, 37:241–275,
1999.

[Kha99b] R. Khardon. Learning range restricted Horn expressions. In Proceedings of the Fourth
European Conference on Computational Learning Theory, pages 111–125, Nordkirchen,
Germany, 1999. Springer-verlag. LNAI 1572.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987. Second Edition.

[MF92] S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

[MR94] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 19 & 20:629–680, May 1994.

[Plo70] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,
1970.

[RS98] K. Rao and A. Sattar. Learning from entailment of logic programs with local vari-
ables. In Proceedings of the International Conference on Algorithmic Learning Theory,
Otzenhausen, Germany, 1998. Springer-verlag. LNAI 1501.

[RT98] C. Reddy and P. Tadepalli. Learning first order acyclic Horn programs from entailment.
In International Conference on Inductive Logic Programming, pages 23–37, Madison,
WI, 1998. Springer. LNAI 1446.

[Sha83] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.

[Sha91] E. Y. Shapiro. Inductive inference of theories from facts. In J. L. Lassez and G. D.
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages 199–
255. The MIT Press, 1991.

23

