
T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Laboratory for Foundations of Computer Science

A New Algorithm for Learning Range Restricted Horn Expressions

by

Marta Arias, Roni Khardon

Informatics Research Report EDI-INF-RR-0010

Division of Informatics March 2000
http://www.informatics.ed.ac.uk/

A New Algorithm for Learning Range Restricted Horn
Expressions

Marta Arias, Roni Khardon

Informatics Research Report EDI-INF-RR-0010

DIVISION of INFORMATICS
Laboratory for Foundations of Computer Science

March 2000

Abstract :
A learning algorithm for the class of range restricted Horn expressions is presented and proved correct. The

algorithm works within the framework of learning from entailment, where the goal is to exactly identify some pre-fixed
and unknown expression by making questions to membership and equivalence oracles. This class has been shown to
be learnable in previous work. The main contribution of this paper is in presenting a more direct algorithm for the
problem which yields an improvement in terms of the number of queries made to the oracles. The algorithm is also
adapted to the class of Horn expressions with inequalities on all syntactically distinct terms where further improvement
in the number of queries is obtained.

Keywords : computational learning theory, Horn expressions, least general generalisation, learning from entailment

Copyright c 2000 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

A New Algorithm for Learning Range Restricted Horn

Expressions∗

Marta Arias
Division of Informatics
University of Edinburgh
marta@dcs.ed.ac.uk

Roni Khardon
Division of Informatics
University of Edinburgh
roni@dcs.ed.ac.uk

Abstract. A learning algorithm for the class of range restricted Horn expressions is presented and proved correct.

The algorithm works within the framework of learning from entailment, where the goal is to exactly identify some

pre-fixed and unknown expression by making questions to membership and equivalence oracles. This class has

been shown to be learnable in previous work. The main contribution of this paper is in presenting a more direct

algorithm for the problem which yields an improvement in terms of the number of queries made to the oracles. The

algorithm is also adapted to the class of Horn expressions with inequalities on all syntactically distinct terms where

further improvement in the number of queries is obtained.

1 Introduction

This paper considers the problem of learning an unknown first order expression1 T from examples
of clauses that T entails or does not entail. This type of learning framework is known as learning
from entailment. A great deal of work has been done in this learning setting. For example, [FP93]
formalised learning from entailment using equivalence queries and membership queries in the study
of learnability of propositional Horn expressions. Generalising this result to the first order setting
is of clear interest. Learning first order Horn expressions has become a fundamental problem
in the field of Inductive Logic Programming (see [MR94] for a survey). This field has produced
several systems that are able to learn in the first order setting using equivalence and membership
entailment queries. Among these are, for example, MIS [Sha83, Sha91] and CLINT [DRB92].

A learning algorithm for the class of range restricted Horn expressions is presented. The main
property of this class is that all the terms in the conclusion of a clause appear in the antecedent
of the clause, possibly as subterms of more complex terms. This work is based on previous results
on learnability of function free Horn expressions and range restricted Horn expressions. The
learnability of the class of range restricted Horn expressions was solved in [Kha99b] by reducing it
to the case of function free Horn expressions, already solved in [Kha99a]. The algorithm presented
here has been obtained by retracing this reduction and using the resulting algorithm as a starting
point. However, it has been significantly modified and improved. The algorithm in [Kha99a,
Kha99b] uses two main procedures. The first, given a counterexample clause, minimises the
clause while maintaining it as a counterexample. The minimisation procedure used here is stronger
resulting in a clause which includes a syntactic variant of a target clause as a subset. The second
procedure combines two examples producing a new clause that may be a better approximation
for the target. While the algorithm in [Kha99a, Kha99b] uses direct products of models we use
an operation based on the lgg (least general generalisation [Plo70]). The use of lgg seems to be
a more natural and intuitive technique to use for learning from entailment, and it has been used

∗This work was partly supported by EPSRC Grant GR/M21409.
1The unknown expression that has to be identified is commonly referred to as target expression.

1

before, both in theoretical and applied work [Ari97, RT98, RS98, MF92]. Thus the contributions
of this paper are to give a more direct algorithm for the class and establish better bounds in terms
of running time and number of queries to the oracles.

We extend our results to the class of fully inequated range restricted Horn expressions. The main
property of this class is that it does not allow unification of its terms. To avoid unification, every
clause in this class includes in its antecedent a series of inequalities between all its terms. With a
minor modification to the learning algorithm, we are able to show learnability of the class of fully
inequated range restricted Horn expressions. The more restricted nature of this class allows for
better bounds to be derived.

The rest of the paper is organised as follows. Section 2 gives some preliminary definitions. The
learning algorithm is then presented in Section 3 and proved correct in Section 4. The results are
extended to the class of fully inequated range restricted Horn expressions in Section 5. Finally,
Section 6 compares the results obtained in this paper with previous results.

2 Preliminaries

2.1 Range Restricted Horn Expressions

We consider a subset of the class of universally quantified expressions in first order logic. The
learning problem assumes a pre-fixed known and finite signature of the language. This signature S
consists of a finite set of predicates P and a finite set of functions F , both predicates and functions
with their associated arity. Constants are functions with arity 0. A set of variables x1, x2, x3, ...
is used to construct expressions.

Definitions of first order languages can be found in standard texts ([Llo87]). Here we briefly
introduce the necessary constructs. A variable is a term of depth 0. If t1, ..., tn are terms, each of
depth at most i and one with depth precisely i and f ∈ F is a function symbol of arity n, then
f(t1, ..., tn) is a term of depth i + 1.

An atom is an expression p(t1, ..., tn) where p ∈ P is a predicate symbol of arity n and t1, ..., tn
are terms. An atom is called a positive literal. A negative literal is an expression ¬l where l is a
positive literal.

A clause is a disjunction of literals where all variables are taken to be universally quantified. A
Horn clause has at most one positive literal and an arbitrary number of negative literals. A Horn
clause ¬p1 ∨ ... ∨ ¬pn ∨ pn+1 is equivalent to its implicational form p1 ∧ ... ∧ pn → pn+1. We call
p1 ∧ ... ∧ pn the antecedent and pn+1 the consequent of the clause.

A Horn clause is said to be definite if it has exactly one positive literal. A Range Restricted Horn
clause is a definite Horn clause in which every term appearing in its consequent also appears in
its antecedent, possibly as a subterm of another term. A Range Restricted Horn Expression is a
conjunction of Range Restricted Horn clauses.

The truth value of first order expressions is defined relative to an interpretation I of the predicates
and function symbols in the signature S. An interpretation2 I includes a domain D which is a
finite set of elements. For each function f ∈ F of arity n, I associates a mapping from Dn to D.
For each predicate symbol p ∈ P of arity n, I specifies the truth value of p on n-tuples over D.
The extension of a predicate in I is the set of positive instantiations of it that are true in I.

Let p be an atom, I an interpretation and θ a mapping of the variables in p to objects in I. The
ground positive literal p · θ is true in I iff it appears in the extension of I. A ground negative
literal is true in I iff its negation is not.

2Also called structure or model.

2

A Horn clause C = p1 ∧ ... ∧ pn → pn+1 is true in a given interpretation I, denoted I |= C iff for
any variable assignment θ (a total function from the variables in C into the domain elements of
I), if all the literals in the antecedent p1θ, ..., pnθ are true in I, then the consequent pn+1θ is also
true in I. A Horn Expression T is true in I, denoted I |= T , if all of its clauses are true in I. The
expressions T is true in I, I satisfies T , I is a model of T , and I |= T are equivalent.

Let T1, T2 be two Horn expressions. We say that T1 implies T2, denoted T1 |= T2, if every model
of T1 is also a model of T2.

2.2 The Learning Model

In this paper we consider the model of exact learning from entailment, that was formalised by
[FP93] in the propositional setting. In this model examples are clauses. Let T be the target
expression, H any hypothesis presented by the learner and C any clause. An example C is
positive for a target theory T if T |= C, otherwise it is negative. The learning algorithm can make
two types of queries. An Entailment Equivalence Query (EntEQ) returns “Yes” if H = T and
otherwise it returns a clause C that is a counter example, i.e., T |= C and H 6|= C or vice versa.
For an Entailment Membership Query (EntMQ), the learner presents a clause C and the oracle
returns “Yes” if T |= C, and “No” otherwise. The aim of the learning algorithm is to exactly
identify the target expression T by making queries to the equivalence and membership oracles.

2.3 Some definitions

Definition 1 (Multi-clause) A multi-clause is a pair of the form [s, c], where both s and c
are sets of literals such that s ∩ c = ∅. s is the antecedent of the multi-clause and c is the
consequent. Both are interpreted as the conjunction of the literals they contain. Therefore,
the multi-clause [s, c] is interpreted as the logical expression

∧
b∈c s → b. An ordinary clause

C = sc → bc corresponds to the multi-clause [sc, {bc}].

Definition 2 (Implication relation) We say that a logical expression T implies a multi-clause
[s, c] if it implies all of its single clause components. That is, T |= [s, c] iff T |=

∧
b∈c s → b.

Definition 3 (Correct multi-clause) A multi-clause [s, c] is said to be correct w.r.t an expres-
sion T if for every literal b ∈ c, T |= s → b. That is, T |= [s, c].

Definition 4 (Exhaustive multi-clause) A multi-clause [s, c] is said to be exhaustive w.r.t an
expression T if every literal b such that T |= s → b is included in c.

Definition 5 (Full multi-clause) A multi-clause is said to be full w.r.t an expression T if it is
correct and exhaustive w.r.t. T .

Definition 6 (Size of a multi-clause) The size of a multi-clause is defined as:

size([s, c]) = |s|+ variables(s) + 2 · functions(s),

where |·| refers to the number of literals, variables(·) to the number of occurrences of variables
and functions(·) to the number of occurrences of functions symbols.

2.4 Most General Unifier

Definition 7 (Unifier) Let Σ be a finite set of expressions. A substitution θ is called a unifier
for Σ if Σ · θ is a singleton. If there exists a unifier for Σ, we say that Σ is unifiable. The only
expression in Σ · θ will also be called a unifier.

3

Definition 8 (Most General Unifier) The substitution θ is a most general unifier (abbrevi-
ated to mgu) for Σ if θ is a unifier for Σ and if for any other unifier σ there is a substitution γ
such that σ = θγ. Also, the only element in Σ · θ will be called a mgu of Σ if θ is a mgu.

Definition 9 (Disagreement Set) Let Σ be a finite set of expressions. The disagreement set
of Σ is defined as follows. Locate the leftmost symbol position at which not all members of Σ
have the same symbol, and extract from each expression in Σ the subexpression beginning at that
symbol position. The set of all these expressions is the disagreement set.

Example 1 Σ = {p(x, y, v), p(x, f(g(a)), x), p(x, f(z), f(a))}. The disagreement set of Σ appears
underlined.

1. Let Σ be the set of expressions to be unified.

2. Set k to 0 and σ0 to ∅, the empty substitution.

3. Repeat until Σ · σk is a singleton

(a) Let Dk be the disagreement set for Σ · σk.

(b) If there exists x and t in Dk such that x is a variable not occurring in t,
then set σk+1 = σk · {x 7→ t}.

(c) Otherwise, report that Σ is not unifiable and stop.

4. Return σk.

Figure 1: The unification algorithm

Theorem 1 (Unification Theorem) Let Σ be a finite set of expressions. If Σ is unifiable, then
the Unification Algorithm terminates and gives a mgu for Σ. If Σ is not unifiable, then the
Unification Algorithm terminates and reports the fact that Σ is not unifiable.

Proof. The unification algorithm is described in Figure 1. See [Llo87] for the proof. ¥

2.5 Least General Generalisation

Definition 10 (Subsumption) Let s1, s2 be any two sets of literals. We say that s1 subsumes
s2 (denoted s1 ¹ s2) if and only if there exists a substitution θ such that s1 · θ ⊆ s2. We also say
that s1 is a generalisation of s2.

Definition 11 (Selection) A selection of two sets of literals s1 and s2 is a pair of literals (l1, l2)
such that l1 ∈ s1, l2 ∈ s2, and both l1 and l2 have the same predicate symbol, arity and sign.

Definition 12 (Least General Generalisation) Let s, s′, s1, s2 be clauses. We say that s is
the least general generalisation (lgg) of s1 and s2 if and only if s subsumes both s1 and s2, and if
there is any other clause s′ subsuming both s1 and s2, then s′ also subsumes s.

Plotkin proved in [Plo70] that the lgg of any two sets of literals exists if and only if they have a
selection. Moreover, he gave an algorithm to find it and proved its correctness. The algorithm
appears in Figure 2.

The computation of the lgg generates a table that given two terms, each appearing in one of the
input sets of literals, determines the term to which that pair of terms will be generalised.

Example 2 As an example, consider the following two sets. The symbols a, b, c, 1, 2 stand for
constants, f is a unary function, g is a binary function, x, z are variables and p, q are predicate
symbols of arity 2 and 1, respectively.

4

• If s1 and s2 are sets of literals,

lgg(s1, s2) = {lgg(l1, l2) | (l1, l2) is a selection of s1 and s2}

• If p is a predicate of arity n,

lgg(p(s1, ..., sn), p(t1, ..., tn)) = p(lgg(s1, t1), ..., lgg(sn, tn))

• If f(s1, ..., sn) and g(t1, ..., tm) are two terms,

lgg(f(s1, ..., sn), g(t1, ..., tm)) = f(lgg(s1, t1), ..., lgg(sn, tn))

if f = g and n = m. Else, it is a new variable x, where x stands for the lgg of that pair of
terms throughout the computation of the lgg of the set of literals.

Figure 2: The lgg algorithm

• s1 = {p(a, f(b)), p(g(a, x), c), q(a)}

• s2 = {p(z, f(2)), q(z)}

• We compute lgg(s1, s2):

– Selection: p(a, f(b)) with p(z, f(2)).

∗ The terms a− z generate entry [a - z => X].
∗ The terms f(b)− f(2) generate entries [b - 2 => Y], [f(b) - f(2) => f(Y)].

– Selection: p(g(a, x), c) with p(z, f(2)).

∗ The terms g(a, x)− z generate entry [g(a,x) - z => Z].
∗ The terms c− f(2) generate entry [c - f(2) => V].

– Selection: q(a) with q(z).

∗ The terms a− z appear already as an entry of the table, therefore no new entry is
generated.

• lgg(s1, s2) = {p(X, f(Y)), p(Z, V), q(X)}

• The lgg table for it is [a - z => X]
[b - 2 => Y]
[f(b) - f(2) => f(Y)]
[g(a,x) - z => Z]
[c - f(2) => V]

2.6 Transforming the target expression

In this section we describe the transformation U(T) performed on any target expression T . It
is very similar to the transformation described in [Kha99a] and it serves similar purposes. This
transformation is never computed by the learning algorithm, it is only used in the analysis of the
proof of correctness.

The idea is to create from every clause C in T the set of clauses U(C). Every clause in U(C)
corresponds to the original clause C with the difference that in every clause in U(C) some terms
of C have been unified in a certain way, different for every clause in U(C). The clauses in U(C)
will only be satisfied if the terms are unified in exactly that way. To achieve this, a series of
appropriate inequalities are prepended to every transformed clause’s antecedent. The set U(C)
covers all possible ways of unifying terms of the original clause C.

Definition 13 (Function ineq(·)) Let s be any set of literals. Then ineq(s) is the set of all
inequalities between terms appearing in s.

5

Example 3 Let s be the set {p(x, y), q(f(y))} with terms {x, y, f(y)}.
Then ineq(s) = {x 6= y, x 6= f(y), y 6= f(y)} also written as (x 6= y 6= f(y)) for short.

We construct U(T) from T by considering every clause separately. For a clause C in T with
set of terms T , we generate a set of clauses U(C). To do that, consider all partitions of the
terms in T ; each such partition, say π, can generate a clause of U(C), denoted Uπ(C). Therefore,
U(T) =

∧
C∈T U(C) and U(C) =

∧
π∈Partitions(T) Uπ(C).

To compute the clause Uπ(C), take the partition and order its classes in any way. Taking one
class at a time, compute its mgu if possible. If there is no mgu, discard that partition. Otherwise,
apply the unifying substitution to the rest of elements in classes not handled yet, and continue
with the following class. If the representatives3 of any two distinct classes happen to be equal,
then discard that partition as well. This is because the inequality between the representatives of
those two classes will never be satisfied (they are equal!), and the resulting clause is superfluous.
When all classes have been unified, we proceed to translate the clause C. All (top-level) terms
appearing in C are substituted by the mgu found for the class they appear in, and the inequalities
are included in the antecedent. This gives the transformed clause Uπ(C). This process is described
in Figure 3.

1. Let T be the expression to be transformed.

2. Let U(T) be the empty expression.

3. For every clause C = sc → bc in T and for every partition π of the set of terms
(and subterms) appearing in C do

• Let the partition π be {π1, π2, ..., πl}.
• Let σ0 be ∅.
• For i = 1 to l do

– If πi · σi−1 is unifiable, then

∗ θi = mgu(πi · σi−1).

∗ σi = σi−1 · θi.

– Otherwise, discard the partition.

• If there are two classes πi and πj (i 6= j) such that πi · σl = πi · σl, then discard the partition.

• Otherwise,

– Set Uπ(C) = ineq(sc · σl), sc · σl → bc · σl.

– Set U(T) to U(T) ∧ Uπ(C).

4. Return U(T).

Figure 3: The transformation algorithm

Example 4 Let the clause to be transformed be C = p(f(x), f(y), g(z)) → q(x, y, z). The terms
appearing in C are {x, y, z, f(x), f(y), g(z)}. We consider some possible partitions:

• When π = {x}, {y}, {z}, {f(x)}, {f(y)}, {g(z)}.

Stage mgu θ σ Partitions Left
0 ∅ {x}, {y}, {z}, {f(x)}, {f(y)}, {g(z)}
1 {x} ∅ ∅ {y}, {z}, {f(x)}, {f(y)}, {g(z)}
2 {y} ∅ ∅ {z}, {f(x)}, {f(y)}, {g(z)}
3 {z} ∅ ∅ {f(x)}, {f(y)}, {g(z)}
4 {f(x)} ∅ ∅ {f(y)}, {g(z)}
5 {f(y)} ∅ ∅ {g(z)}
6 {g(z)} ∅ ∅

3We call the representative of a class any of its elements applied to the unifying substitution (mgu).

6

C · σ6 = p(f(x), f(y), g(z)) → q(x, y, z).

Uπ(C) = (x 6= y 6= z 6= f(x) 6= f(y) 6= g(z)), p(f(x), f(y), g(z)) → q(x, y, z).

• When π = {x, y}, {z}, {f(x), f(y)}, {g(z)}.

Stage mgu θ σ Partitions Left
0 ∅ {x, y}, {z}, {f(x), f(y)}, {g(z)}
1 {x, y} {y 7→ x} {y 7→ x} {z}, {f(x), f(x)}, {g(z)}
2 {z} ∅ {y 7→ x} {f(x), f(x)}, {g(z)}
3 {f(x), f(x)} ∅ {y 7→ x} {g(z)}
4 {g(z)} ∅ {y 7→ x}

C · σ4 = p(f(x), f(x), g(z)) → q(x, x, z).

Uπ(C) = (x 6= z 6= f(x) 6= g(z)), p(f(x), f(x), g(z)) → q(x, x, z).

• When π = {x, y, z}, {f(x), g(z)}, {f(y)}.

Stage mgu θ σ Partitions Left
0 ∅ {x, y, z}, {f(x), g(z)}, {f(y)}
1 {x, y, z} {y, z 7→ x} {y, z 7→ x} {f(x), g(x)}, {f(x)}
2 {f(x), g(x)} No mgu

Note that this partition is not a good one because it is not possible to unify f(·) with g(·),
which reflects the fact that the expressions f(·) and g(·) could not possibly be syntactically
equivalent (which is the effect of including two different terms into a same class in the
partition).

• When π = {x, y, z}, {f(x)}, {f(y)}, {g(z)}.

Stage mgu θ σ Partitions Left
0 ∅ {x, y, z}, {f(x)}, {f(y)}, {g(z)}
1 {x, y, z} {y, z 7→ x} {y, z 7→ x} {f(x)}, {f(x)}, {g(x)}

The reason why we discard partitions in which there is a term (obtained after applying the
various unifying substitutions) appearing in at least two different classes, is because the idea
behind the partitions is that the elements belonging to a same equivalence class, will be
unified and will be distinct to every element in any other class. When one literal happens
to be in two distinct classes, the inequality between the two will never be satisfied, and
the resulting clause’s antecedent will be never satisfied. Such clauses do not provide any
information. And hence, can be ignored.

• When π = {x, y, z}, {f(x), f(y)}, {g(z)}.

Stage mgu θ σ Partitions Left
0 ∅ {x, y, z}, {f(x), f(y)}, {g(z)}
1 {x, y, z} {y, z 7→ x} {y, z 7→ x} {f(x), f(x)}, {g(x)}
2 {f(x), f(x)} ∅ {y, z 7→ x} {g(x)}
3 {g(z)} ∅ {y, z 7→ x}

C · σ3 = p(f(x), f(x), g(x)) → q(x, x, x).

Uπ(C) = (x 6= f(x) 6= g(x)), p(f(x), f(x), g(x)) → q(x, x, x).

• When π = {x, f(x)}, {y, z, f(y), g(z)}.

7

Stage mgu θ σ Partitions Left
0 ∅ {x, f(x)}, {y, z, f(y), g(z)}
1 {x, f(x)} No mgu

Looking at the previous example we can draw the following conclusions. First, no clause will
be generated for those partitions containing some class with two functional terms with different
top-level function symbol (since no pair of such terms is unifiable). And also, no clause will be
generated for those partitions containing some class with two terms such that one is a subterm of
the other (since no pair of such terms is unifiable).

This results in an important restriction on the total number of clauses of the transformation, since
many partitions are discarded. However, we will use the number of all possible partitions as an
upper bound of the number of clauses of the transformation of the target expression. Namely, if
the target expression T has m clauses, then the number of clauses in the transformation U(T) is
bounded by mtt, with t being the maximum number of distinct terms appearing in one clause of
T . This is because the number of partitions of a set with t elements is bounded by tt. And any of
the m clauses in T can produce at most tt clauses for U(T).

Lemma 2 Let C be any range restricted Horn clause and π any partition of its terms that has
not been discarded according to the unifying method applied to the classes of π. Then, the clause
Uπ(C) is also range restricted.

Proof. Let |π| be l. Consider the clause C ·σl as computed in the procedure described in Figure 3.
We claim is that this clause C ·σl is range restricted. All the terms appearing in C ·σl’s consequent
have the form t · σl, where t is some term in C’s antecedent. Since C is range restricted, t also
appears in C’s antecedent, and hence, t · σl must also appear in C · σl’s antecedent. Therefore,
C · σl is range restricted. And Uπ(C) is also range restricted, since they only differ in that Uπ(C)
has some more inequality literals in the antecedent than C · σl. ¥

Lemma 3 T |= U(T).

Proof. To see this, it suffices to notice that every clause in U(T) is subsumed by the clause in T
that originated it. Therefore, the implication applies. ¥

Corollary 4 If U(T) |= C, then T |= C. Also, if U(T) |= [s, c], then T |= [s, c].

Proof. Suppose U(T) |= C. By Lemma 3, T |= U(T). It follows that T |= U(T) |= C and
therefore T |= C as required. Since any multi-clause [s, c] can be split into its individual clauses,
i.e. {s → b | b ∈ c}, the second result follows. ¥
However, the inverse implication U(T) |= T of Lemma 3 does not hold. To see this, consider the
following example.

Example 5 We present an expression T , its transformation U(T) and an interpretation I such
that I |= U(T) but I 6|= T .

• T = {p(a, f(a)) → q(a)}.

• U(T) = {(a 6= f(a)), p(a, f(a)) → q(a)}.

• Interpretation I: DI = {1}; constant a = 1; function f(1) = 1; ext(I) = {p(1, 1)}.

• I 6|= T because p(a, f(a))under I = p(1, 1) ∈ ext(I) but q(a)under I = q(1) 6∈ ext(I).

• I |= U(T) because inequality (a 6= f(a))under I = (1 6= 1) is false and therefore the
antecedent of the clause is falsified. Hence, the clause is satisfied.

8

3 The Algorithm

1. Set S to be the empty sequence.

2. Set H to be the empty hypothesis.

3. Repeat until EntEQ(H) returns “Yes”:

(a) Let x be the (positive) counterexample received (T |= x and H 6|= x).

(b) Minimise counterexample x - use calls to EntMQ.
Let [sx, cx] be the minimised counterexample produced.

(c) Find the first [si, ci] ∈ S such that there is a basic pairing [s, c] of terms of [si, ci]
and [sx, cx] satisfying:

i. size(s) ¯ size(si)

ii. rhs(s, c) 6= ∅
(d) If such an [si, ci] is found then replace it by the multi-clause [s, rhs(s, c)].

(e) Otherwise, append [sx, cx] to S.

(f) Set H to be
∧

[s,c]∈S {s → b | b ∈ c}.
4. Return H

Figure 4: The learning algorithm

The algorithm keeps a sequence S of representative counterexamples. The hypothesis H is gener-
ated from this sequence, and the main task of the algorithm is to refine the counterexamples in
order to get a more accurate hypothesis in each iteration of the main loop, line 3, until hypothesis
and target expressions coincide.

There are two basic operations on counterexamples that need to be explained in detail. These
are minimisation (line 3b), that takes a counterexample as given by the equivalence oracle and
produces a positive, full counterexample. And pairing (line 3c), that takes two counterexamples
and generates a series of candidate counterexamples. The counterexamples obtained by combina-
tion of previous ones are the candidates to refine the sequence S. These operations are carefully
explained in the following sections 3.1 and 3.2.

The basic structure handled by the algorithm is the full multi-clause w.r.t. the target expression
T . All counterexamples take the form of a full multi-clause. Although the equivalence oracle does
not produce a counterexample in this form, it is converted by calling the procedure rhs. This
happens during the minimisation procedure.

Given a set s of ground literals, its corresponding set c of consequents can be easily found using
the EntMQ oracle. For every literal not in s built up using terms in s we make an entailment
membership query and include it in c only if the answer to the query is “Yes”4. This is done
by the procedure rhs. There are two versions for this procedure, one taking one parameter and
another taking two. If there is only one input parameter, then the set of consequents is computed
trying all possibilities. If a second input parameter is specified, only those literals appearing in
this second set are checked and included in the result if necessary. This second version prevents
from making unnecessary calls to the membership oracle in case we know beforehand that some
literals will not be implied. To avoid unnecessary calls to the oracle, literals in c with terms not
appearing in s will be automatically ruled out. To summarise:

• rhs(s) = {b | b 6∈ s and EndMQ(s → b) = Y es}

• rhs(s, c) = {b | b ∈ c and EndMQ(s → b) = Y es}
4It is sufficient to consider only literals built up from terms appearing in s, since the target expression is range

restricted.

9

3.1 Minimising the counterexample

1. Let x be the counterexample obtained by the EntEQ oracle.

2. Let sx be the set of literals {b | H |= antecedent(x) → b}.
3. Set cx to rhs(sx).

4. Repeat until no more changes are made

• For every functional term t appearing in sx, in decreasing order of weight, do

– Let [s′x, c′x] be the multi-clause obtained from [sx, cx] after substituting all occurrences
of the term f(t) by a new variable xf(t).

– If rhs(s′x, c′x) 6= ∅, then set [sx, cx] to [s′x, rhs(s′x, c′x)].

5. Repeat until no more changes are made

• For every term t appearing in sx, in increasing order of weight, do

– Let [s′x, c′x] be the multi-clause obtained after removing from [sx, cx] all those literals
containing t.

– If rhs(s′x, c′x) 6= ∅, then set [sx, cx] to [s′x, rhs(s′x, c′x)].

6. Return [sx, cx].

Figure 5: The minimisation procedure

The minimisation procedure has to transform a counterexample clause x as generated by the
equivalence query oracle into a multi-clause counterexample [sx, cx] ready to be handled by the
learning algorithm. The way in which this procedure tries to minimise the counterexample is by
removing literals and generalising terms.

The minimisation procedure constructs first a full multi-clause that will be refined in the following
steps. To do this, all literals implied by antecedent(x) and the clauses in the hypothesis will be
included in the first version of the new counterexample’s antecedent (sx), line 2. This can be done
by forward chaining using the hypothesis’ clauses, starting off with the literals in antecedent(x).
Finally, the consequent of the first version of the new counterexample (cx) will be constructed as
rhs(sx).

Next, we enter the loop in which terms are generalised (line 4). We do this by considering every
term that is not a variable (i.e. constants are also included) one at a time. The way to proceed is
to substitute every occurrence of the term by a new variable, and then check whether the multi-
clause is still positive. If so, the counterexample is updated to the new multi-clause obtained.
And we continue trying to generalise some other functional terms not yet considered. The process
finishes when there are no terms that can be generalised in [sx, cx]. Note that if some term cannot
be generalised, it will stay so during the computation of this loop, so that by keeping track of the
failures, unnecessary computation time and queries can be saved. Note, too, that terms containing
some new created variable need not be checked, because the order in which terms are checked is
from more complex to more simple ones, and if we have some term containing a new created
variable, then this term will have been checked already, when the internal term had not yet been
generalised.

Finally, we enter the loop in which literals are removed (line 5). We do this by considering one
term at a time. We remove every literal containing that term in sx and cx and check if it is still
positive. If so, then the counterexample is updated to the new multi-clause obtained. And we
continue trying to remove more literals that have not been considered so far. The process finishes
when there are no terms that can be dropped in [sx, cx]. Note also that there is a better way to
compute step 5 by keeping track of the failures of the check, so that those failures are never tried
twice.

Example 6 This example illustrates the behaviour of the minimisation procedure. f, g stand for

10

functional symbols or arity 1 and x, y, z for variables. Parentheses in terms are omitted since we
deal with functions of arity 1 only. a, b, c are constants and p, q, r, s are the predicate symbols, all
of arity 1 except for p which has arity 2.

• Target expression T = {[p(x, fy) → r(y)], [q(fz) → s(z)]}.

• Hypothesis H = {q(ffx) → s(fx)}.

• Counterexample x as given by the EntEQ oracle: p(ga, ffb), q(ffb), r(gfc) → r(fb).

• After step 2, sx = {p(ga, ffb), q(ffb), r(gfc), s(fb)}.

• After step 3, cx = {r(fb)}.

• The first version of full counterexample is [{p(ga, ffb), q(ffb), r(gfc), s(fb)}, {r(fb)}].

• Generalising terms. The list of functional terms is [gfc, ffb, fc, fb, ga, c, b, a].

– Generalise term gfc 7→ x1:

∗ [s′x, c′x] = [{p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
∗ rhs(s′xc′x) = {r(fb)}.
∗ [sx, cx] = [{p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
∗ The list of terms still to check is [ffb, fb, ga, b, a].

– Generalise term ffb 7→ x2:

∗ [s′x, c′x] = [{p(ga, x2), q(x2), r(x1), s(fb)}, {r(fb)}].
∗ rhs(s′xc′x) = ∅.
∗ [sx, cx] = [{p(ga, ffb), q(ffb), r(x1), s(fb)}, {r(fb)}].
∗ The list of terms still to check is [fb, ga, b, a].

– Generalise term fb 7→ x3:

∗ [s′x, c′x] = [{p(ga, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
∗ rhs(s′xc′x) = {r(x3)}.
∗ [sx, cx] = [{p(ga, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
∗ The list of terms still to check is [ga, a].

– Generalise term ga 7→ x4:

∗ [s′x, c′x] = [{p(x4, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
∗ rhs(s′xc′x) = {r(x3)}.
∗ [sx, cx] = [{p(x4, fx3), q(fx3), r(x1), s(x3)}, {r(x3)}].
∗ No more terms to generalise and this loop finishes.

• Removing literals. The list of terms is [x1, x3, x4, fx3].

– Drop term x1:

∗ [s′x, c′x] = [{p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
∗ rhs(s′xc′x) = {r(x3)}.
∗ [sx, cx] = [{p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
∗ The list of terms still to check is [x3, x4, fx3].

– Drop term x3:

∗ [s′x, c′x] = [{}, {}].
∗ rhs(s′xc′x) = ∅.
∗ [sx, cx] = [{p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
∗ The list of terms still to check is [x4, fx3].

11

– Drop term x4:
∗ [s′x, c′x] = [{q(fx3), s(x3)}, {r(x3)}].
∗ rhs(s′xc′x) = ∅.
∗ [sx, cx] = [s′x, c′x] = [{p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
∗ The list of terms still to check is [fx3].

– Drop term fx3:
∗ [s′x, c′x] = [{s(x3)}, {r(x3)}].
∗ rhs(s′xc′x) = ∅.
∗ [sx, cx] = [{p(x4, fx3), q(fx3), s(x3)}, {r(x3)}].
∗ No more terms to drop and the minimisation is finished.

3.2 Pairings

A crucial process in the algorithm is how two counterexamples are combined into a new one,
hopefully yielding a better approximation of some target clause. The operation proposed here
uses pairings of clauses, based on the lgg (see Section 2.5 in Page 4).

3.2.1 Matchings

We have two multi-clauses, [sx, cx] and [si, ci] that need to be combined. To do so, we generate
a series of matchings between the terms of sx and si, and any of these matchings will produce
the candidate to refine the sequence S, and hence, the hypothesis. A matching is a set whose
elements are pairs of terms tx − ti, where tx ∈ sx and ti ∈ si. If sx contains less terms than si,
then there should be an entry in the matching for every term in sx. Otherwise, there should be
an entry for every term in si. That is, the number of entries in the matching equals the minimum
of the number of distinct terms in sx and si. We only use 1-1 matchings, i.e., once a term has
been included in the matching it cannot appear in any other entry of the matching. Usually, we
denote a matching by the Greek letter σ.

Example 7 Let [sx, cx] = [{p(a, b)}, {q(a)}] and [si, ci] = [{p(f(1), 2)}, {q(f(1))}]. The terms
appearing in sx are {a, b}. And in si are {1, 2, f(1)}. The possible matchings are:

σ1 = {a− 1, b− 2} σ3 = {a− 2, b− 1} σ5 = {a− f(1), b− 1}
σ2 = {a− 1, b− f(1)} σ4 = {a− 2, b− f(1)} σ6 = {a− f(1), b− 2}

Definition 14 (Extended matching) An extended matching is an ordinary matching with an
extra column added to every entry of the matching (every entry consists of two terms in an
ordinary matching). This extra column contains the lgg of every pair in the matching. The lggs
are simultaneous, that is, they share the same table.

Definition 15 (Legal matching) Let σ be an extended matching. We say σ is legal if every
subterm of some term appearing as the lgg of some entry, also appears as the lgg of some other
entry of σ.

Example 8 The matching σ is {a− c, f(a)− b, f(f(a))− fb, g(f(f(a)))− g(f(f(c)))}.
The extended matching of σ is [a - c => X]

[f(a) - b => Y]
[f(f(a)) - f(b) => f(Y)]
[g(f(f(a))) - g(f(f(c))) => g(f(f(X)))].

The terms appearing in the extension column of σ are {X,Y, f(Y), g(f(f(X)))}. The subterm
f(X) is not included in this set, and it is a subterm of the term g(f(f(X))) appearing in the set.
Therefore, this matching is not legal.

12

Example 9 The matching σ is {a− c, f(a)− b, f(f(a))− fb}.
The extended matching of σ is [a - c => X]

[f(a) - b => Y]
[f(f(a)) - f(b) => f(Y)]

The terms appearing in the extension column of σ are {X,Y, f(Y)}. All subterms of the terms
appearing in this set are also contained in it, and therefore σ is legal.

Our algorithm considers a more restricted type of matching, thus restricting the number of possible
matchings for any pair of multi-clauses [sx, cx] and [si, ci].

Definition 16 (Basic matching) A basic matching σ is defined for two multi-clauses [sx, cx]
and [si, ci] such that the number of terms in sx is less or equal than the number of terms in si. It
is a 1-1, legal matching such that if entry f(t1, ..., tn)− g(r1, ..., rm) ∈ σ, then f = g, n = m and
ti − ri ∈ σ for all i = 1, ..., n. Notice this is not a symmetric operation, since [sx, cx] is required to
have less distinct terms than [si, ci].

We construct basic matchings given [sx, cx] and [si, ci] in the following way. Consider all possible
matchings between the variables in sx and the terms in si. Complete them by adding the functional
terms in sx that are not yet included in the basic matching in an upwards fashion, beginning with
the more simple terms. For every term f(t1, ..., tn) in sx such that all ti − ri (with i = 1, ..., n)
appear already in the basic matching, add a new entry f(t1, ..., tn) − f(r1, ..., rn). Notice this is
not possible if f(r1, ..., rn) does not appear in si or the term f(r1, ..., rn) has already been used.
In this case, we cannot complete the matching and it is discarded. Otherwise, we continue until
all terms in sx appear in the matching.

Example 10 No parentheses for functions are written.

• sx = {p(a, fx)} with terms {a, x, fx}.

• si = {p(a, f1), p(a, 2)} with terms {a, 1, 2, f1}.

• The basic matchings to consider are:

– [x - a]: cannot add [a - a], therefore discarded.

– [x - 1]: completed with [a - a] and [fx - f1].

– [x - 2]: cannot add [fx - f2], therefore discarded.

– [x - f1] cannot add [fx - ff1], therefore discarded.

Let [sx, cx] and [si, ci] be any pair of multi-clauses, [sx, cx] containing k variables and [si, ci]
containing t distinct terms. There are a maximum of tk distinct basic matchings between them,
since we only combine variables of sx with terms in si.

3.2.2 Pairings

We start our explanation of the pairing procedure. This procedure is described in Figure 6. The
input to a pairing is a pair of multi-clauses and a basic matching between the terms appearing
in them. A legal pairing is a pairing for which the input matching is legal. A basic pairing is a
pairing for which the input matching is basic.

The antecedent s of the pairing is computed as the lgg of sx and si restricted to the matching
inducing it. This restriction is quite strong in the sense that, for example, if the literals p(f(f(1)))
and p(f(a)) are included in sx and si (respectively), then their lgg p(f(X)) will not be included
even if the extended entry [f(1) - a => X] is in the matching. We will only include it if the

13

1. Let [sx, cx] and [si, ci] be the multi-clauses to be paired.

2. Let TBL be the table produced when computing the lgg of sx and si.

3. Let σ be the basic matching between terms of [sx, cx] and [si, ci].

4. Compute the extension of σ, restricted to the table TBL.
If it is not possible to compute the lgg for some pair of terms in σ, then return [∅, ∅].

5. Else, let [s, c] be [lgg|σ (sx, si), lgg|σ (sx, ci) ∪ lgg|σ (cx, si) ∪ lgg|σ (cx, ci)].

6. Return [s, c].

Figure 6: The pairing procedure

extended entry [f(f(1)) - f(a) => f(X)] appears in the matching. Similarly, suppose p(a)
appears in both sx and si. Their lgg p(a) will not be included unless the entry [a - a => a]
appears in the matching.

To compute the consequent c of the pairing, the union of lgg|σ (sx, ci), lgg|σ (cx, si) and lgg|σ (cx, ci)
is computed. Note that in the consequent all those possible couples among {sx, cx, si, ci} are
included except sx, si, that is in the antecedent and therefore does not have to be in the consequent.
The same lgg table is used as the one used for lgg(sx, si). To summarise:

[s, c] = pairing|σ ([sx, cx], [si, ci]) = [lgg|σ (sx, si), lgg|σ (sx, ci) ∪ lgg|σ (cx, si) ∪ lgg|σ (cx, ci)].

Note that when computing any of the lggs, the same table is used. That is, the same pair of
terms will be bound to the same expression in any of the four possible lggs that are computed in
a pairing: lgg|σ (sx, si), lgg|σ (sx, ci), lgg|σ (cx, si) and lgg|σ (cx, ci).

Example 11 How to compute the antecedent of a pairing:

• sx = {p(a, fx)} with terms {a, x, fx}.

• si = {p(a, f1), p(a, 2)} with terms {a, 1, 2, f1}.

• The lgg of sx and si is {p(a, fX), p(a, Y)}.
The lgg table is [a - a => a]

[x - 1 => X]
[fx - f1 => fX]
[fx - 2 => Y]

• From Example 10 we have only one possible basic matching, σ = {x− 1, a− a, fx− f1}.
The extended matching is [x - 1 => X]

[a - a => a]
[fx - f1 => fX]

• The antecedent s = lgg|σ (sx, si) = {p(a, fX)}

3.2.3 What matchings do we consider?

One of the key points of our algorithm lies in reducing the number of matchings needed to be
checked by ruling out some of the candidate matchings that do not satisfy some restrictions
imposed. By doing so we avoid testing too many pairings and hence making unnecessary calls to
the oracles. One of the restrictions has already been mentioned, it consists in considering basic
pairings only as opposed to considering every possible matching. This reduces the tt possible
distinct matchings to only tk distinct basic pairings. The other restriction on the candidate
matching consists in the fact that every one of its entries must appear in the original lgg table.
This is mentioned in line 4 of the pairing procedure.

14

4 Proof of correctness

During the analysis, s will stand for the cardinality of P , the set of predicate symbols in the
language; a for the maximal arity of the predicates in P ; k for the maximum number of distinct
variables in a clause of T ; t for the maximum number of distinct terms in a clause of T including
constants, variables and functional terms; et for the maximum number of distinct terms in a
counterexample as produced by the equivalence query oracle; m for the number of clauses of the
target expression T ; m′ for the number of clauses of the transformation of the target expression
U(T) as described in Section 2.6, which is bounded by mtt. Before starting with the proof, we
give some definitions.

Definition 17 (Covering multi-clause) A multi-clause [s, c] covers a clause ineq(st), st → bt if
there is a mapping θ from variables in st into terms in s such that st·θ ⊆ s and ineq(st)·θ ⊆ ineq(s).
Equivalently, we say that ineq(st), st → bt is covered by [s, c].

Definition 18 (Violating multi-clause) A multi-clause [s, c] violates a clause ineq(st), st → bt

if there is a mapping θ from variables in st into terms in s such that ineq(st), st → bt is covered
by [s, c] via θ and bt · θ ∈ c. Equivalently, we say that ineq(st), st → bt is violated by [s, c].

4.1 Brief description

It is clear that if the algorithm stops, then the returned hypothesis is correct, therefore the proof
focuses on assuring that the algorithm finishes. To do so, a bound is established on the length of
the sequence S. That is, only a finite number of counterexamples can be added to S and every
refinement of an existing multi-clause reduces its size, and hence termination is guaranteed.

To bound the length of the sequence S the following condition is proved. Every element in
S violates some clause of U(T) but no two distinct elements of S violate the same clause of
U(T) (Lemma 23). The bound on the length of S is therefore m′, the number of clauses of the
transformation U(T).

To see that every element in S violates some clause in U(T), it is shown that all counterexamples
in S are full multi-clauses w.r.t. the target expression T (Lemma 18) and that any full multi-clause
must violate some clause in U(T) (Corollary 7).

The fact that there are no two elements in S violating a same clause in T is proved by induction
on the way S is constructed. Lemma 20 is used in this proof and it constitutes the most important
lemma in our analysis. Lemma 20 states that if a minimised multi-clause [sx, cx] violates some
clause C in U(T) covered by some other full multi-clause [si, ci], then there is a pairing, say [s, c],
considered by the algorithm that is going to replace [si, ci] in S. To show this, a matching σ
is constructed and proved to be legal, basic and not discarded by the pairing procedure. This
establishes that the pairing induced by σ is going to be considered by the learning algorithm. And
it is shown that the conditions needed for replacing [si, ci], namely rhs(s, c) 6= ∅ and size(s) ¯

size(si) are satisfied, and hence [si, ci] is replaced. This, together with Lemma 22 stating that if
a legal pairing violates some clause C, then the clauses that originate the pairing cover C and at
least one of them violates it, prove that there cannot be two different elements in S violating the
same clause in U(T).

Once the bound on S is established, we derive our final theorem by carefully counting the number
of queries made to the oracles in every procedure. We proceed now with the analysis in detail.

15

4.2 Proof of correctness

Lemma 5 If [s, c] is a positive example for a Horn expression T , then there is some clause
ineq(st), st → bt of U(T) such that st · θ ⊆ s, ineq(st) · θ ⊆ ineq(s) and bt · θ 6∈ s, where θ
is some substitution mapping variables of st into terms of s. That is, ineq(st), st → bt is covered
by [s, c] via θ and bt · θ 6∈ s.

Proof. Consider the interpretation I whose objects are the different terms appearing in s plus
an additional special object ∗. Let DI be the set of objects in I. Let σ be the mapping from
terms in s into objects in I. The function mappings in I are defined following σ, or ∗ when not
specified. We want I to falsify the multi-clause [s, c]. Therefore, the extension of I, say ext(I),
includes exactly those literals in s (with the corresponding new names for the terms), that is,
ext(I) = s · σ, where the top-level terms in s are substituted by their image in DI given by σ.

It is easy to see that this I falsifies [s, c], because s∩ c = ∅ by definition of multi-clause. And since
I 6|= [s, c] and T |= [s, c], we can conclude that I 6|= T . That is, there is a clause C = sc → bc in T
such that I 6|= C and there is a substitution θ′ from variables in sc into domain objects in I such
that sc · θ′ ⊆ ext(I) and bc · θ′ 6∈ ext(I).

Complete the substitution θ′ by adding all the remaining functional terms of C. The image that
they are assigned to is their interpretation using the function mappings in I and the variable
assignment θ′. When all terms have been included, consider the partition π induced by the
completed θ′, that is, two terms are included in the same class of the partition iff they are mapped
to the same domain object by the completed θ′. Now, consider the clause Uπ(C). This clause is
included in U(T) because the classes are unifiable (the existence of [s, c] is the proof for it) and
therefore it is not rejected by the transformation procedure.

We claim that this clause Uπ(C) is the clause ineq(st), st → bt mentioned in the lemma. Let θ̂ be
the mgu used to obtain Uπ(C) from C with the partition π. That is, Uπ(C) = ineq(sc · θ̂), sc · θ̂ →
bt · θ̂. Let θ′′ be the substitution such that θ′ = θ̂ · θ′′. This θ′′ exists since θ̂ is a mgu and θ′ is also
a unifier for every class in the partition by construction. The clause Uπ(C) = ineq(st), st → bt is
falsified using the substitution θ′′:

• sc · θ′︸︷︷︸
θ̂·θ′′

⊆ ext(I) implies sc · θ̂︸ ︷︷ ︸
st

·θ′′ ⊆ ext(I) implies st · θ′′ ⊆ ext(I), and

• bc · θ′︸︷︷︸
θ̂·θ′′

6∈ ext(I) implies bc · θ̂︸︷︷︸
bt

·θ′′ 6∈ ext(I) implies bt · θ′′ 6∈ ext(I).

Now we have to find a θ for which the three conditions stated in the lemma are satisfied. We
define θ as θ′′ · σ−1. Notice σ is invertible since all the elements in its range are different. And
it can be composed to θ′′ since all elements in the range of θ′′ are in DI , and the domain of σ
consists precisely of all objects in DI . Notice also that s = ext(I) ·σ−1, and this can be done since
the object ∗ does not appear in ext(I). It is left to show that:

• st · θ ⊆ s: st · θ′′ ⊆ ext(I) implies st · θ′′ · σ−1︸ ︷︷ ︸
θ

⊆ ext(I) · σ−1︸ ︷︷ ︸
s

.

• ineq(st)·θ ⊆ ineq(s). Take any two different terms t, t′ of st. The inequality t 6= t′ ∈ ineq(st),
since we have assumed they are different. The terms t · θ, t′ · θ appear in s, since st · θ ⊆ s.
In order to be included in ineq(s) they need to be different terms. Hence, we only need to
show that the terms t · θ, t′ · θ are different terms. By way of contradiction, suppose they are
not, i.e. t · θ = t′ · θ, so that t · θ′′ · σ−1 = t′ · θ′′ · σ−1. The substitution σ−1 maps different
objects into different terms, hence t and t′ were mapped into the same domain object of I by
θ′′. Or equivalently, that the terms tc, t

′
c of sc for which t = tc · θ̂ and t′ = t′c · θ̂ were mapped

16

into the same domain object. But then they fall into the same class of the partition, hence
they have the same representative in st and t = tc · θ̂ = t′c · θ̂ = t′, which contradicts our
assumption that t and t′ are different.

• bt · θ 6∈ s: bt · θ′′ 6∈ ext(I) implies bt · θ′′ · σ−1︸ ︷︷ ︸
θ

6∈ ext(I) · σ−1︸ ︷︷ ︸
s

.

¥

Example 12 This example illustrates Lemma 5. No parentheses are written, as function f is
unary.

• T = {C} = {p(a, fx, y) → q(x, y)} with terms {a, x, y, fx}.

• U(T) = {(a 6= x 6= y 6= fx),p(a, fx,y) → q(x,y), (from partition {{a}, {x}, {y}, {fx}})
(a 6= y 6= fa),p(a, fa,y) → q(a,y), (from partition {{a, x}, {y}, {fx}})
(a 6= x 6= fx),p(a, fx,a) → q(x,a), (from partition {{x}, {a, y}, {fx}})
(a 6= x 6= fx),p(a, fx,x) → q(x,x), (from partition {{a}, {x, y}, {fx}})
(a 6= fa),p(a, fa,a) → q(a,a), (from partition {{a, x, y}, {fx}})
(a 6= x 6= fx),p(a, fx, fx) → q(x, fx), (from partition {{a}, {x}, {y, fx}})
(a 6= fa),p(a, fa, fa) → q(a, fa)} (from partition {{a, x}, {y, fx}})

• [s, c] = [{p(a, fz, fz)}, {q(z, fz)}] with terms {a, z, fz}.

Clearly, T |= [s, c] since the only clause in T subsumes [s, c] with the substitution {x 7→ z, y 7→ fz}.
We construct the interpretation I:

• Domain DI = {1, 2, 3, ∗}. And σ = {a 7→ 1, z 7→ 2, fz 7→ 3}

• Function mapping for constant a: a = 1
Function mapping for function f : f1 = ∗, f2 = 3, f3 = ∗, f∗ = ∗

• Extension ext(I) = s · σ = {p(a, fz, fz)} · {a 7→ 1, z 7→ 2, fz 7→ 3} = {p(1, 3, 3)}

It holds that I 6|= [s, c] with the variable assignment {z 7→ 2}. The multi-clause [s, c] interpreted in
I following the variable assignment mentioned earlier is [{p(1, 3, 3)}, {q(2, 3)}] and {p(1, 3, 3)} ⊆
ext(I) but {q(2, 3)} ∩ ext(I) = ∅.
And I 6|= T . T has only one clause C in our example, therefore, I 6|= p(a, fx, y) → q(x, y). To
see this, consider the variable substitution θ′ = {x 7→ 2, y 7→ 3}. This clause interpreted in I
following θ′ is p(1, 3, 3) → q(2, 3) and p(1, 3, 3) ∈ ext(I) but q(2, 3) 6∈ ext(I). This shows falsity of
this clause in I.

To choose the right clause in U(C), we complete θ′ with all terms in C and obtain {x 7→ 2, y 7→
3, a 7→ 1, fx 7→ 3}. This induces the partition {{a}, {x}, {y, fx}}.
The clause we choose from U(C) is (a 6= x 6= fx)︸ ︷︷ ︸

ineq(st)

, p(a, fx, fx)︸ ︷︷ ︸
st

→ q(x, fx)︸ ︷︷ ︸
bt

.

The mgu used to obtain this clause from C is θ̂ = {y 7→ fx}. The substitution θ′′ corresponding
to θ′ after θ̂ has been applied is θ′′ = {x 7→ 2}.
The substitution θ is θ′′ · σ−1 = {x 7→ 2} · {1 7→ a, 2 7→ z, 3 7→ fz} = {x 7→ z}. And θ satisfies:

• st · θ ⊆ s: st · θ = {p(a, fx, fx)} · {x 7→ z} = {p(a, fz, fz)} ⊆ s = {p(a, fz, fz)}.

• ineq(st) · θ ⊆ ineq(s): ineq(st) · θ = (a 6= z 6= fz) ⊆ ineq(s) = (a 6= z 6= fz).

17

• bt · θ 6∈ s: bt · θ = q(x, fx) · {x 7→ z} = q(z, fz) 6∈ s = {p(a, fz, fz)}.

Lemma 6 If a multi-clause [s, c] is positive for some target expression T , c 6= ∅ and it is exhaustive
w.r.t. T , then some clause of U(T) must be violated by [s, c].

Proof. By Lemma 5, there is a mapping θ such that [s, c] covers some clause ineq(st), st → bt of
U(T) and bt · θ 6∈ s. Since ineq(st), st → bt is a clause in U(T), we can conclude that T |= st → bt.
This happens because by the way the transformation was constructed, there must be some clause
in T subsuming st → bt. Therefore, T |= st · θ → bt · θ and since st · θ ⊆ s, T |= s → bt · θ.
Since [s, c] is exhaustive, bt · θ 6∈ s and T |= s → bt · θ, the literal bt · θ must be included in
c. The multi-clause [s, c] covers ineq(st), st → bt via θ and bt · θ ∈ c. Therefore, [s, c] violates
ineq(st), st → bt via θ. ¥

Corollary 7 If a multi-clause [s, c] is full w.r.t. some target expression T and c 6= ∅, then some
clause of U(T) must be violated by [s, c].

Proof. The conditions of Lemma 6 are satisfied. ¥

Lemma 8 If a full [s, c] violates a clause ineq(st), st → bt in U(T), then rhs(s, c) 6= ∅.

Proof. Since [s, c] violates the clause ineq(st), st → bt in U(T), there is a substitution θ such that
st · θ ⊆ s and bt · θ ∈ c. Let sc → bc be the clause in T that generated ineq(st), st → bt in U(T).
This is, there is a unifying substitution σ such that sc ·σ = st and bc ·σ = bt. Let θ′ = σ · θ. Thus,
sc · θ′ ⊆ s and bc · θ′ ∈ c.

T |= sc → bc implies T |= sc · θ′ → bc · θ′. And since sc · θ′ ⊆ s, T |= s → bc · θ′. Also, bc · θ′ is in c
so that bc · θ′ ∈ rhs(s, c) 6= ∅. ¥

Lemma 9 Every multi-clause [sx, cx] produced by the minimisation procedure is full w.r.t. the
target expression T .

Proof. To see that the multi-clause is correct it suffices to observe that every time the candidate
multi-clause has been updated, the consequent part is computed as the output of the procedure
rhs. Therefore, it must be correct.

The first version of the counterexample [sx, cx] as produced by step 3 of the algorithm is exhaustive
since cx is computed by use of rhs(sx).

We prove that after generalising a term the resulting counterexample is also exhaustive. Let [sx, cx]
be the multi-clause before generalising t and [s′x, c′x] after. Let the substitution θ be {t 7→ xt}.
Then, sx · θ = s′x, cx · θ = c′x and also sx = s′x · θ−1, because xt is a new variable that does not
appear in sx. We will see that any literal b 6∈ s′x implied by s′x w.r.t. T is included in c′x, and hence
[s′x, c′x] is exhaustive, so that [s′x, rhs(c′x)] is exhaustive as well. Suppose, then, that T |= s′x → b
and b 6∈ s′x. This implies that T |= s′x ·θ−1 → b ·θ−1. Thus, T |= sx → b ·θ−1. Also, b ·θ−1 6∈ s′x ·θ−1

implies b · θ−1 6∈ sx. By induction hypothesis, [sx, cx] is exhaustive, therefore b · θ−1 ∈ cx. And
hence, b · θ−1 · θ = b ∈ c′x. And any counterexample [sx, cx] after step 4 is exhaustive.

We will show now that after dropping some term t the multi-clause still remains exhaustive. Again,
let [sx, cx] be the multi-clause before removing t and [s′x, c′x] after removing it. It is clear that
s′x ⊆ sx and c′x ⊆ cx since both have been obtained by removing literals only. Therefore, the
only literals that could be missing in cx are the ones in sx \ s′x. But we know that such literals
cannot be implied by s′x because they contain terms that do not appear in s′x (remember that the
target expression is range restricted). Therefore, after step 5 and as returned by the minimisation
procedure, the counterexample [sx, cx] is exhaustive. ¥

18

Definition 19 (Positive counterexample) A multi-clause [s, c] is a positive counterexample
for some target expression T and some hypothesis H if T |= [s, c], c 6= ∅ and for all literals b ∈ c,
H 6|= s → b.

Lemma 10 All counterexamples given by the equivalence query oracle are positive w.r.t. the target
T and the hypothesis H.

Proof. Follows from the fact that only correct clauses are included in H, and hence T |= H. ¥

Lemma 11 Every multi-clause [sx, cx] produced by the minimisation procedure is a positive coun-
terexample for the target expression T and for the hypothesis H.

Proof. To prove that [sx, cx] is a positive counterexample we need to prove that T |= [sx, cx],
cx 6= ∅ and for every b ∈ cx it holds that H 6|= sx → bx. By Lemma 9, we know that [sx, cx] is full,
and hence correct. This implies that T |= [sx, cx]. It remains to show that H does not imply any
of the clauses in [sx, cx] and that cx 6= ∅.
Let x be the original counterexample obtained from the equivalence oracle. This x is such
that T |= x but H 6|= x (see Lemma 10). The antecedent of the multi-clause sx is set to be
{b | H |= antecedent(x) → b}. Hence, antecedent(x) ⊆ sx. We know that consequent(x) is not
included in sx because x is a counterexample and hence H 6|= x. The consequent cx is computed as
rhs(sx). We can conclude, then, that consequent(x) ∈ cx because it is implied by and not included
in sx. Therefore, cx 6= ∅. Also, H 6|= [sx, rhs(sx)], since all literals implied by antecedent(x) ap-
pear in sx, and therefore in rhs(sx) only literals not implied by H appear. Therefore, after step
3 of the minimisation procedure, the multi-clause [sx, cx] is a positive counterexample.

Next, we will see that after generalising some functional term t, the multi-clause still remains
a positive counterexample. The multi-clause [sx, cx] is only updated if the consequent part is
nonempty, therefore, all the multi-clauses obtained by generalising will have a nonempty conse-
quent. Let [sx, cx] be the multi-clause before generalising t, and [s′x, c′x] after. Assume [sx, cx]
is a positive counterexample. Let θ be the substitution {t 7→ xt}. As in Lemma 9, sx · θ = s′x,
cx ·θ = c′x, sx = s′x ·θ−1 and also cx = c′x ·θ−1. Suppose by way of contradiction that H |= s′x → b′,
for some b′ ∈ c′x. Then, H |= s′x · θ−1 → b′ · θ−1. And we get that H |= sx → b′ · θ−1. Note that
b′ ∈ c′x implies that b′ · θ−1 ∈ c′x · θ−1 and hence b′ · θ−1 ∈ cx. This contradicts our assumption
stating that [sx, cx] was a counterexample, since we have found a literal in cx implied by sx w.r.t.
H. Thus, the multi-clause [sx, cx] after step 4 is a positive counterexample for the target T and
the hypothesis H.

Finally, we will show that after dropping some term t the multi-clause still remains a positive
counterexample. As before, the multi-clause [sx, cx] is only updated if the consequent part is
nonempty, therefore, all the multi-clauses obtained by dropping will have a nonempty consequent.
Let [sx, cx] be the multi-clause before removing some of its literals, and [s′x, c′x] after. It is the
case that s′x ⊆ sx and c′x ⊆ cx. To see this second inclusion, note that first, some literals are
removed from cx and the resulting set goes through rhs, that might remove some literals as well.
Suppose [sx, cx] is a positive counterexample. Hence, H 6|= sx → b, for every b ∈ cx. Therefore,
H 6|= s′x → b because s′x ⊆ sx. And this is for every b ∈ c′x, because c′x ⊆ cx and b ∈ cx. ¥

Lemma 12 Let [sx, cx] be a multi-clause as generated by the minimisation procedure. If [sx, cx]
violates some clause ineq(st), st → bt of U(T), then it must be via some substitution θ such that
θ is a variable renaming, i.e., θ maps distinct variables of st into distinct variables of sx only.

Proof. [sx, cx] is violating ineq(st), st → bt, hence there must exist a substitution θ from variables
in st into terms in sx such that st · θ ⊆ sx, ineq(st) · θ ⊆ ineq(sx) and bt · θ ∈ cx. We will show
that θ must be a variable renaming.

19

By way of contradiction, suppose that θ maps some variable v of st into a functional term t of sx

(i.e. v · θ = t). Consider the generalisation of the term t in step 4 of the minimisation procedure.
We will see that the term t should have been generalised and substituted by the new variable xt,
contradicting the fact that the variable v was mapped into a functional term.

Let θt = {t 7→ xt} and [s′x, c′x] = [sx · θt, cx · θt]. Consider the substitution θ · θt. We will see
that [s′x, c′x] violates ineq(st), st → bt via θ · θt and hence rhs(s′x, c′x) 6= ∅ and therefore t must be
generalised to the variable xt. To see the violation we need to show:

• st · θ · θt ⊆ s′x. Easy, since by hypothesis st · θ ⊆ sx implies st · θ · θt ⊆ sx · θt = s′x.

• ineq(st) · θ · θt ⊆ ineq(s′x). Let t1, t2 two distinct terms of st. We have to show that t1 · θ · θt

and t2 · θ · θt are two different terms of s′x and therefore their inequality appears in ineq(s′x).
It is easy to see that they are terms of s′x since st · θ · θt ⊆ s′x. To see that they are also
different terms, notice first that t1 · θ and t2 · θ are different terms of sx, since the clause
ineq(st), st → bt is violated by [sx, cx]. It is sufficient to show that if t′1, t

′
2 are any two

distinct terms of sx, then t′1 · θt and t′2 · θt also are.

Notice the substitution θt maps the term t into a new variable xt that does not appear in
sx. Consider the first position where t′1 and t′2 differ. Then, t′1 ·θt and t′2 ·θt will also differ in
this same position, since at most one of the terms can contain t in that position. Therefore
they also differ after applying θt.

• bt · θ · θt ∈ c′x. Easy, since by hypothesis bt · θ ∈ cx implies bt · θ · θt ∈ cx · θt = c′x.

Hence, no variable in θ can be mapped into a functional term and θ is a variable renaming. ¥

Lemma 13 Let [sx, cx] be a multi-clause as output by the minimisation procedure. And let
ineq(st), st → bt be any clause of U(T) violated by [sx, cx]. Then, the number of distinct terms in
[sx, bx] is equal to the number of distinct terms in ineq(st), st → bt.

Proof. Let nx and nt be the number of distinct terms appearing in sx and st, respectively.
Subterms should also be counted. The multi-clause [sx, cx] violates ineq(st), st → bt. Therefore
there is a θ mapping variables in st showing this violation. The substitution θ satisfies ineq(st)·θ ⊆
ineq(sx) as this is one of the violation conditions, and therefore a different variable are mapped
into different terms of sx by θ. By Lemma 12, we know also that every variable of st is mapped
into a variable of sx. Therefore, θ maps distinct variables of st into distinct variables of sx.
Therefore, the number of terms in st equals the number of terms in st · θ, since there has only
been a non-unifying renaming of variables. Also, st · θ ⊆ sx. We have to check that the remaining
literals in sx \ st · θ do not include any term not appearing in st · θ.
Suppose there is a literal l ∈ sx \ (st · θ) containing some term, say t, not appearing in st · θ.
Consider when in step 5 of the minimisation procedure the term t was checked. Let [s′x, c′x] be
the clause obtained after the removal of the literals containing t. Then, st · θ ⊆ s′x because all the
literals in st · θ do not contain t. Also, bt · θ ∈ c′x because it does not either (T is range restricted).
Therefore, the [s′x, c′x] still violates ineq(st), st → bt. And therefore, rhs(s′x, c′x) 6= ∅ and such a
term t cannot exist. Therefore, nt = nx as required. ¥

Corollary 14 The number of terms of a counterexample as generated by the minimisation proce-
dure is bounded by t, the maximum of the number of distinct terms in the target clauses.

Proof. Follows easily from the fact that that any nt as in the previous lemma is bounded by t,
since the transformed clauses in U(T) never contain more terms than the ones in T that originated
them. ¥

20

Lemma 15 Let [s, c] be any multi-clause covering some clause ineq(st), st → bt. Let n and nt be
the number of distinct terms in s and st, respectively. Then, nt ≤ n.

Proof. Since [s, c] covers the clause ineq(st), st → bt, there is a θ s.t. ineq(st) · θ ⊆ ineq(s).
Therefore, any two distinct terms t, t′ of st appear as distinct terms t · θ, t′ · θ in s. And therefore,
s has at least as many terms as st. ¥

Corollary 16 Let ineq(st), st → bt be a clause of U(T) with nt distinct terms. Let [sx, cx] be
a multi-clause with nx distinct terms as output by the minimisation procedure such that [sx, cx]
violates the clause ineq(st), st → bt. Let [si, ci] be a multi-clause with ni terms covering the clause
ineq(st), st → bt. Then nx ≤ ni.

Proof. By Lemma 13, nx = nt. By Lemma 15, nt ≤ ni, hence nx ≤ ni. ¥

Lemma 17 Let [sx, cx] and [si, ci] be two full multi-clauses w.r.t. the target expression T . Let σ
be a basic matching between the terms in sx and si that is not rejected by the pairing procedure.
Let [s, c] be the basic pairing of [sx, cx] and [si, ci] induced by σ. Then the multi-clause [s, rhs(s, c)]
is also full w.r.t. T .

Proof. To see that [s, rhs(s, c)] is full w.r.t. T , it is sufficient to show that [s, c] is exhaustive.
That is, whenever T |= s → b and b 6∈ s, then b ∈ c. Suppose, then, that T |= s → b with b 6∈ s.
Since s = lgg|σ (sx, si) ⊆ lgg(sx, si), we know that there exist θx and θi such that s · θx ⊆ sx

and s · θi ⊆ si. T |= s → b implies both T |= (s → b) · θx and T |= (s → b) · θi. Therefore,
T |= s · θx → b · θx and T |= s · θi → b · θi. Let bx = b · θx and bi = b · θi. Finally, we obtain
that T |= sx → bx and T |= si → bi. By assumption, [sx, cx] and [si, ci] are full, and therefore
bx ∈ sx ∪ cx and bi ∈ si ∪ ci. Also, since the same lgg table is used for all lgg(·, ·) we know that
b = lgg(bx, bi). Therefore b must appear in one of lgg(sx, si), lgg(sx, ci), lgg(cx, si) or lgg(cx, ci).
But b 6∈ lgg(sx, si) since b 6∈ s by assumption.

Note that all terms and subterms in b appear in s. If not, then it could not have been implied by
s w.r.t. T , since T is range restricted. We know that σ is basic and hence legal, and therefore it
contains all subterms of terms appearing in s. Thus, by restricting any of the lgg(·, ·) to lgg|σ (·, ·),
we will not get rid of b, since it is built up from terms that appear in s and hence in σ. Therefore,
b ∈ lgg|σ (sx, ci) ∪ lgg|σ (cx, si) ∪ lgg|σ (cx, ci) = c as required. ¥

Lemma 18 Every element [s, c] appearing in the sequence S is full w.r.t. the target expression T .

Proof. The sequence S is constructed by appending minimised counterexamples or by refining
existing elements with a pairing with another minimised counterexample. Lemma 9 guarantees
that all minimised counterexamples are full and, by Lemma 17, any basic pairing between full
multi-clauses is also full. ¥

Lemma 19 Let [s, c] be any pairing of the two multi-clauses [sx, cx] and [si, ci]. Then, it is the
case that |s| ≤ |si| and |s| ≤ |sx|.

Proof. It is sufficient to observe that in s there is at most one copy of every atom sx and si. This
is true since the matching used to include literals in s is 1 to 1 and therefore a term can only be
combined with a unique term and no duplication of literals occurs. ¥

Lemma 20 Let S be the sequence [[s1, c1], [s2, c2], ..., [sk, ck]]. If a minimised counterexample
[sx, cx] is produced such that it violates some clause ineq(st), st → bt in U(T) covered by some
[si, ci] of S, then some multi-clause [sj , cj] will be replaced by a basic pairing of [sx, cx] and [sj , cj],
where j ≤ i.

21

Proof. We will show that if no element [sj , cj] where j < i is replaced, then the element [si, ci]
will be replaced. We have to prove that there is a basic pairing [s, c] of [sx, cx] and [si, ci] with the
following two properties:

1. rhs(s, c) 6= ∅

2. size(s) ¯ size(si)

We have assumed that there is some clause ineq(st), st → bt ∈ U(T) violated by [sx, cx] and
covered by [si, ci]. Let θ′x be the substitution showing the violation of ineq(st), st → bt by [sx, cx]
and θ′i be the substitution showing the fact that ineq(st), st → bt is covered by [si, ci]. Thus the
following holds:

st · θ′x ⊆ sx; ineq(st) · θ′x ⊆ ineq(sx); bt · θ′x ∈ cx and st · θ′i ⊆ si; ineq(st) · θ′i ⊆ ineq(si).

We construct a matching σ that includes all entries [t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)] such that
t is a term appearing in st (only one entry for every distinct term of st).

Claim 1 The matching σ as described above is 1-1 and the number of entries equals the minimum
of the number of distinct terms in sx and si.

Proof. All the entries of σ have the form [t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)]. For σ to be 1-1 it is
sufficient to see that there are no two terms t, t′ of st generating the following entries in σ

[t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)] and [t′ · θ′x - t′ · θ′i => lgg(t′ · θ′x, t · θ′i)]

such that t · θ′x = t′ · θ′x or t · θ′i = t′ · θ′i. But this is clear since [sx, cx] and [si, ci] are covering
ineq(st), st → bt via θ′x and θ′i, respectively. Therefore ineq(st) · θ′x ⊆ ineq(sx) and ineq(st) · θ′i ⊆
ineq(si). And therefore t ·θ′x and t′ ·θ′x appear as different terms in sx. Also, t ·θ′i and t′ ·θ′i appear
as different terms in si. And σ is 1-1.

By construction, the number of entries equals the number of distinct terms in st, that by Lemma 13
is the number of distinct terms in sx. And by Lemma 15, [si, ci] contains at least as many terms
as st. Therefore, the number of entries in σ coincides with the minimum of the number of distinct
terms in sx and si. ¤

Example 13 Consider the following example:

• st = {p(g(c), x, f(y), z)}, with 6 terms {c, g(c), x, y, f(y), z}.

• sx = {p(g(c), x′, f(y′), z), p(g(c), g(c), f(y′), c)}, with 6 terms {c, g(c), x′, y′, f(y′), z}.

• si = {p(g(c), f(1), f(f(2)), z)}, with 8 terms {c, g(c), 1, f(1), 2, f(2), f(f(2)), z)}.

• θ′x = {x 7→ x′, y 7→ y′, z 7→ z} is a variable renaming.

• θ′i = {x 7→ f(1), y 7→ f(2), z 7→ z}.

• The lgg table is [c - c => c]
[g(c) - g(c) => g(c)]
[x’ - f(1) => X]
[y’ - f(2) => Y]
[f(y’) - f(f(2)) => f(Y)]
[z - z => z]
[g(c) - f(1) => Z]
[c - z => V]

22

• lgg(sx, si) = {p(g(c), X, f(Y), z), p(g(c), Z, f(Y), V)}.

• The matching σ is [c - c => c] (from constant c)
[g(c) - g(c) => g(c)] (from ground term g(c))
[x’ - f(1) => X] (from variable x)
[y’ - f(2) => Y] (from variable y)
[f(y’) - f(f(2)) => f(Y)] (from term f(y))
[z - z => z] (from variable z)

• lgg|σ (sx, si) = {p(g(c), X, f(Y), z)}.

We consider the pairing of [sx, cx] and [si, ci] induced by σ. We have to show that this pairing is
not discarded, it is basic, rhs(s, c) 6= ∅ and size(s) ¯ size(si).

Claim 2 The matching σ is not discarded.

Proof. Notice that the discarded pairings are those that do not agree with the lgg of sx and si,
but this does not happen in this case, since σ has been constructed precisely using the lgg of some
terms in sx and si. ¤

Claim 3 The matching σ is legal.

Proof. A matching is legal if, by definition, the subterm of any term appearing as the lgg of the
matching, also appears in some other entry of the matching. We will prove it by induction on the
structure of the terms. We prove that if t is a term in st, then the term lgg(t · θ′x, t · θ′i) and all its
subterms appear in the extension of some other entries of σ.

Base case. When t = a, with a being some constant. The entry in σ for it is [a - a => a], since
a · θ = a, for any substitution θ if a is a constant and lgg(a, a) = a. The term a has no subterms,
and therefore all its subterms trivially appear as entries in σ.

Base case. When t = v, where v is any variable in st. The entry for it in σ is [v · θ′x - v · θ′i =>
lgg(v · θ′x, v · θ′i)]. sx is minimised and by Lemma 12 v · θ′x must be a variable. Therefore, the lgg
with anything else must also be a variable. Hence, all its subterms appear trivially since there are
no subterms.

Step case. When t = f(t1, ..., tl), where f is a function symbol of arity l and t1, ..., tl its arguments.
The entry for it in σ is

[f(t1, ..., tl) · θ′x - f(t1, ..., tl) · θ′i => lgg(f(t1, ..., tl) · θ′x, f(t1, ..., tl) · θ′x)︸ ︷︷ ︸
f(lgg(t1·θ′

x,t1·θ′
i),...,lgg(tl·θ′

x,tl·θ′
i))

].

The entries [tj · θ′x - tj · θ′i => lgg(tj · θ′x, tj · θ′x)], with 1 ≤ j ≤ l, are also included in σ, since
all tj are terms of st. By the induction hypothesis, all the subterms of every lgg(tj · θ′x, tj · θ′x)
are included in σ, and therefore, all the subterms of lgg(f(t1, ..., tl) · θ′x, f(t1, ..., tl) · θ′x) are also
included in σ and the step case holds. ¤

Claim 4 The matching σ is basic.

Proof. A basic matching is defined only for two multi-clauses [sx, cx] and [si, ci] such that the
number of terms in sx is less or equal than the number of terms in si. Corollary 16 shows that this
is indeed the case. Following the definition, it should be also 1-1 and legal. Claim 1 shows it is 1-1
and by Claim 3 we know it is also legal. It is only left to see that if entry f(t1, ..., tn)−g(r1, ..., rm)
is in σ, then f = g, n = m and tl − rl ∈ σ for all l = 1, ..., n.

Suppose, then, that f(t1, ..., tn) − g(r1, ..., rm) is in σ. By construction of σ all entries are of the
form t · θ′x− t · θ′i. Thus, assume t · θ′x = f(t1, ..., tn) and t · θ′i = g(r1, ..., rm). We also know that θ′x

23

is a variable renaming, therefore, the term t · θ′x is a variant of t. Therefore, the terms f(t1, ..., tn)
and t are variants. This is, t itself has the form f(t′1, ..., t

′
n), where every t′l is a variant of tl and

t′l · θ′x = tl, where l = 1, ..., n. Therefore, g(r1, ..., rm) = t · θ′i = f(r1 = t′1 · θ′i, ..., rn = t′n · θ′i) and
hence f = g and n = m. We have seen that tl = t′l · θ′x and rl = t′l · θ′i. By construction, σ includes
the entries tl − rl, for any l = 1, ..., n and our claim holds. ¤
It remains to show that the properties (1) and (2) must be satisfied.

Let θx and θi be defined as follows. An entry in σ [t · θ′x = t · θ′i => lgg(t · θ′x, t · θ′i)] such
that lgg(t · θ′x, t · θ′i) is a variable will generate the mapping lgg(t · θ′x, t · θ′i) 7→ t · θ′x in θx and
lgg(t·θ′x, t·θ′i) 7→ t·θ′i in θi. That is, θx = {lgg(t·θ′x, t·θ′i) 7→ t·θ′x} and θi = {lgg(t·θ′x, t·θ′i) 7→ t·θ′i},
whenever lgg(t · θ′x, t · θ′i) is a variable and t is a term in st.

In our example, θx = {X 7→ x′, Y 7→ y′, z 7→ z} and θi = {X 7→ f(1), Y 7→ f(2), z 7→ z}.
The substitutions θx and θi are the ones that show subsumption of sx and si by lgg|σ (sx, si).
Namely,

• s · θx ⊆ sx. Let l be any literal in s, l has been obtained by taking the lgg of two literals
lx and li in sx and si, respectively. That is, l = lgg(lx, li). Moreover, l only contains terms
in the extension of σ, otherwise it would have been removed when restricting the lgg. The
substitution θx is such that l · θx = lx because it “undoes” what the lgg does for the literals
with terms in σ. And lx ∈ sx, therefore, the inclusion s · θx ⊆ sx holds.

• s · θi ⊆ si. Similar to previous.

Claim 5 rhs(s, c) 6= ∅.

Proof. To see this, it suffices by Lemma 8 to show that [s, c] violates ineq(st), st → bt. We have
to find a substitution θ such that st · θ ⊆ s, ineq(st) · θ ⊆ ineq(s) and bt · θ 6∈ s. Since [s, c] is full,
then bt · θ ∈ c and rhs(s, c) 6= ∅ as required.

Let θ be the substitution that maps all variables in st to their corresponding expression assigned
in the extension of σ. That is, θ maps any variable v of st to the term lgg(v · θ′x, v · θ′i).
In our example, θ = {x 7→ X, y 7→ Y, z 7→ z}. The following holds.

• θ ·θx = θ′x. Let v be any variable in st. The substitution θ maps v into lgg(v ·θ′x, v ·θ′i). This
is a variable, say V , since we know θ′x is a variable renaming. The substitution θx contains
the mapping lgg(v · θ′x, v · θ′i)︸ ︷︷ ︸

V

7→ v · θ′x. And v is mapped into v · θ′x by θ · θx.

In our example: θ′x = {x 7→ x′, y 7→ y′, z 7→ z}, and
θ · θx = {x 7→ X, y 7→ Y, z 7→ z} · {X 7→ x′, Y 7→ y′, z 7→ z}.

• θ · θi = θ′i. As in previous property.

• st · θ ⊆ s = lgg|σ (sx, si). Let l be any literal in st and t be any term appearing in l.
The matching σ contains the entry [t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)], since t appears in
st. The substitution θ contains {v 7→ lgg(v · θ′x, v · θ′i)} for every variable v appearing in
st, therefore t · θ = lgg(t · θ′x, t · θ′i). And lgg(t · θ′x, t · θ′i) appears in σ. The literal l · θ
appears in lgg(st · θ′x, st · θ′i) and therefore in lgg(sx, si) since st · θ′x ⊆ sx, st · θ′i ⊆ si and
θ = {v 7→ lgg(v · θ′x, v · θ′i) | v is a variable of st}. Also, l · θ appears in lgg|σ (sx, si) since
we have seen that any term in l · θ appears in σ.

In our example the only l we have in st · θ is p(g(c), x, f(y), z) · θ = p(g(c), X, f(Y), z). And
lgg|σ (sx, sy) is precisely p(g(c), X, f(Y), z).

24

• ineq(st) · θ ⊆ ineq(s). We have to show that for any two distinct terms t, t′ of st, the
terms t · θ and t′ · θ are also different terms in s, and therefore the inequality t · θ 6= t′ · θ
appears in ineq(s). By hypothesis, ineq(st) · θ′x ⊆ ineq(sx). Since θ′x = θ · θx, we get
ineq(st) · θ · θx ⊆ ineq(sx) and so t · θ · θx and t′ · θ · θx are different terms of sx. If follows
that t · θ 6= t′ · θ ∈ ineq(s), since otherwise we could have never distinguished t · θ · θx from
t′ · θ · θx.

• bt · θ 6∈ s. Suppose it is not the case and bt · θ ∈ s. This implies that bt · θ · θx ∈ s · θx ⊆ sx.
Since θ′x = θ · θx, it follows that bt · θ′x ∈ sx, contradicting the fact that [sx, cx] violates
ineq(st), st → bt via θ′x.

¤

Claim 6 size(s) ¯ size(si).

Proof. By way of contradiction, suppose size(s) ≥ size(si). By Lemma 19, we know that |s| ≤ |si|,
therefore size(s) ≤ size(si) since the lgg never substitutes a term by one of greater weight.
Thus, it can only be that size(s) = size(si) and |s| = |si| (if |s| < |si|, then we would also get
size(s) < size(si) for the same reason as before). Remember that θi is the substitution for which
s · θi ⊆ si. We conclude that θi is a variable renaming, since the sizes of s and si are equal and
therefore s · θi = si. Also, si · θ−1

i = s.

Remember θ′x was a variable renaming and θ′x = θ · θx. By the way they were constructed, θ and
θx must be variable renamings, too. si · θ−1

i = s and s · θx ⊆ sx imply si · θ−1
i · θx ⊆ sx. We define

θ̂ as θ−1
i · θx and conclude si · θ̂ ⊆ sx. Notice θ̂ is a variable renaming because θ−1

i and θx are.
That is, there is a variable renaming θ̂ such that si · θ̂ ⊆ sx, θx = θi · θ̂ and θ′x = θ′i · θ̂.
Consider the literal bt · θ′i. We disprove the following two cases:

• bt · θ′i ∈ si. Since θ′i = θ · θi and s · θi = si, we obtain bt · θ · θi ∈ s · θi. The substitution θi

is just a variable renaming, hence bt · θ ∈ s. But bt · θ 6∈ s, since by the proof of claim 5 we
know that bt · θ ∈ c and s ∩ c = ∅.

• bt · θ′i 6∈ si. By Lemma 18, the multi-clause [si, ci] is full and therefore bt · θ′i ∈ ci. Hence, the
clause si → bt · θ′i is included in H. H |= si → bt · θ′i |= si · θ̂ → bt · θ′i · θ̂ |= sx → bt · θ′x, this
last step because si · θ̂ ⊆ sx and θ′x = θ′i · θ̂. That is, H |= sx → bt · θ′x. But since bt · θ′x ∈ cx,
this contradicts the fact that [sx, cx] is a counterexample.

¤
And this concludes the proof of Lemma 20. ¥

Corollary 21 If a counterexample [sx, cx] is appended to S, it is because there is no element in
S violating a clause in U(T) that is also violated by [sx, cx].

Proof. Were it the case, then by Lemma 20 the first element sharing some target clause would
have been replaced instead of being appended. ¥

Lemma 22 Let [s1, c1] and [s2, c2] be two full multi-clauses. And let [s, c] be any legal pairing
between them. If [s, c] violates a clause ineq(st), st → bt, then the following holds:

1. Both [s1, c1] and [s2, c2] cover ineq(st), st → bt.

2. At least one of [s1, c1] or [s2, c2] violates ineq(st), st → bt.

25

Proof. By assumption, ineq(st), st → bt is violated by [s, c], i.e., there is a θ such that st · θ ⊆ s,
ineq(st) · θ ⊆ ineq(s) and bt · θ ∈ c. This implies that if t, t′ are two distinct terms of st, then t · θ
and t′ · θ are also distinct terms appearing in s.

Let σ be the 1-1 legal matching inducing the pairing. The antecedent s is defined to be lgg|σ (s1, s2),
and therefore there exist substitutions θ1 and θ2 such that s · θ1 ⊆ s1 and s · θ2 ⊆ s2.

Condition 1. We claim that [s1, c1] and [s2, c2] cover ineq(st), st → bt via θ · θ1 and θ · θ2,
respectively. Notice that st · θ ⊆ s, and therefore st · θ · θ1 ⊆ s · θ1. Since s · θ1 ⊆ s1, we obtain
st · θ · θ1 ⊆ s1. The same holds for s2.

It remains to show that ineq(st) · θ · θ1 ⊆ ineq(s1) and ineq(st) · θ · θ2 ⊆ ineq(s2). Observe that
all top-level terms appearing in s (remember, s = lgg|σ (s1, s2)) also appear as one entry of the
matching σ, because otherwise they could not have survived. Further, since σ is legal, all subterms
of terms of s also appear as an entry in σ.

Let t, t′ be any distinct terms appearing in st. Since st · θ ⊆ s and σ includes all terms appearing
in s, the distinct terms t · θ and t′ · θ appear as the lgg of distinct entries in σ. These entries have
the form [t · θ · θ1 - t · θ · θ2 => t · θ], since lgg(t · θ · θ1, t · θ · θ2) = t · θ. And, since σ is 1-1, we
know that t · θ · θ1 6= t′ · θ · θ1 and t · θ · θ2 6= t′ · θ · θ2.

Condition 2. By hypothesis, bt · θ ∈ c and c is defined to be lgg|σ (s1, c2) ∪ lgg|σ (c1, s2) ∪
lgg|σ (c1, c2). Observe that all these lggs share the same table, so the same pairs of terms will
be mapped into the same expressions. Observe also that the substitutions θ1 and θ2 are defined
according to this table, so that if any literal l ∈ lgg|σ (c1, ·), then l · θ1 ∈ c1. Equivalently, if
l ∈ lgg|σ (·, c2), then l · θ2 ∈ c2. Therefore we get that if bt · θ ∈ lgg|σ (c1, ·), then bt · θ · θ1 ∈ c1

and if bt · θ ∈ lgg|σ (·, c2), then bt · θ · θ2 ∈ c2. Now, observe that in any of the three possibilities
for c, one of c1 or c2 is included in the lgg|σ . Thus it is the case that either bt · θ · θ1 ∈ c1 or
bt ·θ ·θ2 ∈ c2. Since both [s1, c1] and [s2, c2] cover ineq(st), st → bt, one of [s1, c1] or [s2, c2] violates
ineq(st), st → bt. ¥

Example 14 To illustrate the fact that we need a legal pairing to be able to prove the lemma
above, we present the following counterexample. That is, we present two multi-clauses [s1, c1],
[s2, c2], a non-legal matching σ and a clause ineq(st), st → bt such that the non-legal pairing of
[s1, c1] and [s2, c2] induced by σ violates ineq(st), st → bt but none of [s1, c1] and [s2, c2] do.

• [s1, c1] = [{p(ffa, gffa)}, {q(fa)}] with terms {a, fa, ffa, gffa}
ineq(s1) = (a 6= fa 6= ffa 6= gffa).

• [s2, c2] = [{p(fb, gffc)}, {q(b)}] with terms {b, c, fb, fc, ffc, gffc}.

• The matching σ is [a - c => X]
[fa - b => Y]
[ffa - fb => fY]
[gffa - gffc => gffX]

• [s, c] = [{p(fY, gffX)}, {q(Y)}].

• ineq(st), st → bt = (x 6= fx 6= ffx 6= gffx 6= y 6= fy), p(fy, gffx) → q(y).

• θ = {x 7→ X, y 7→ Y }.

• θ1 = {X 7→ a, Y 7→ fa}.

• θ · θ1 = {x 7→ a, y 7→ fa}.

The multi-clause [s, c] violates ineq(st), st → bt via θ = {x 7→ X, y 7→ Y }. But [s1, c1] does not
cover ineq(st), st → bt because the condition ineq(st) · θ · θ1 ⊆ ineq(s1) fails to hold:

26

(x 6= fx 6= ffx 6= gffx 6= y 6= fy) · θ · θ1 = (a 6= fa 6= ffa 6= gffa 6= fa 6= ffa)

Lemma 23 (Invariant) Every time the algorithm is about to make an entailment equivalence
query, it is the case that every multi-clause in S violates at least one of the clauses of U(T) and
every clause of U(T) is violated by at most one multi-clause in S. In other words, it is not possible
that two distinct multi-clauses in S violate the same clause in U(T) simultaneously.

Proof. To see that every multi-clause [s, c] ∈ S violates at least one clause of U(T), it suffices to
observe that by Lemma 18 all counterexamples included in S are full positive multi-clauses with
c 6= ∅. We can apply Corollary 7, and conclude that [s, c] violates some clause of U(T).

To see that no two different multi-clauses in S violate the same clause of U(T), we proceed by
induction on the number of iterations of the main loop in line 3 of the learning algorithm. In the
first loop the lemma holds trivially (there are no elements in S). By the induction hypothesis we
assume that the lemma holds before a new iteration of the loop. We will see that after completion
of that iteration of the loop the lemma must also hold. Two cases arise.

The minimised counterexample [sx, cx] is appended to S. By Corollary 21, we know that [sx, cx]
does not violate any clause in U(T) also violated by some element [si, ci] in S. This, together with
the induction hypothesis, assures that the lemma is satisfied in this case.

Some [si, ci] is replaced in S. We denote the updated sequence by S′ and the updated element in
S′ by [s′i, c

′
i]. The induction hypothesis claims that the lemma holds for S. We have to prove that

it also holds for S′ as updated by the algorithm. Assume it does not. The only possibility is that
the new element [s′i, c

′
i] violates some clause of U(T), say ineq(st), st → bt also violated by some

other element [sj , cj] of S′, with j 6= i. The multi-clause [s′i, c
′
i] is a basic pairing of [sx, cx] and

[si, ci], and hence it is also legal. Applying Lemma 22 we conclude that one of [sx, cx] or [si, ci]
violates ineq(st), st → bt.

Suppose [si, ci] violates ineq(st), st → bt. This contradicts the induction hypothesis, since both
[si, ci] and [sj , cj] violate ineq(st), st → bt in U(T).

Suppose [sx, cx] violates ineq(st), st → bt. If j < i, then [sx, cx] would have refined [sj , cj] instead
of [si, ci] (Lemma 20). Therefore, j > i. But then we are in a situation where [sj , cj] violates a
clause also covered by [si, ci]. By repeated application of Lemma 22, all multi-clauses in position
i cover ineq(st), st → bt during the history of S. Consider the iteration in which [sj , cj] first
violated ineq(st), st → bt. This could have happened by appending the counterexample [sj , cj],
which contradicts Lemma 20 since [si, ci] or an ancestor of it was covering ineq(st), st → bt but
was not replaced. Or it could have happened by refining [sj , cj] with a pairing of a counterexample
violating ineq(st), st → bt. But then, by Lemma 20 again, the element in position i should have
been refined, instead of refining [sj , cj]. ¥

Corollary 24 The number of elements in S is bounded by m′, the number of clauses in U(T).

Proof. Suppose there are more than m′ elements in S. Since every [s, c] in S violates some clause
in U(T), then it must be the case that two different elements in S violate the same clause of U(T),
since there are only m′ clauses in U(T), which contradicts Lemma 23. ¥

Lemma 25 Let [sx, cx] be any minimised counterexample. Then, |sx|+ |cx| ≤ sta.

Proof. By Corollary 14 there are a maximum of t terms in a minimised counterexample. And
there are a maximum of sta different literals built up from t terms. ¥

Lemma 26 The algorithm makes O(m′sta) equivalence queries.

27

Proof. The sequence S has at most m′ elements. After every refinement, either one literal is
dropped or some term is substituted by one of less weight. This can happen m′sta (to drop
literals) plus m′t (to replace terms) times, that is m′(t + sta). We need m′ extra calls to add all
the counterexamples. That makes a total of m′(1 + t + sta). That is O(m′sta). ¥

Lemma 27 The algorithm makes O(sea+1
t) membership queries in any run of the minimisation

procedure.

Proof. To compute the first version of full multi-clause we need to test the sea
t possible literals

built up from et distinct terms appearing in sx. Therefore, we make sea
t initial calls.

Next, we note that the first version of cx has at most sea
t literals. The first loop (generalisation

of terms) is executed at most et times, one for every term appearing in the first version of sx. In
every execution, at most |cx| ≤ sea

t membership calls are made. In this loop there are a total of
sea+1

t calls.

The second loop of the minimisation procedure is also executed at most et times, one for every
term in sx. Again, since at most sea

t calls are made in the body on this second loop, the total
number of calls is bounded by sea+1

t .

This makes a total of sea
t + 2sea+1

t , that is O(sea+1
t). ¥

Lemma 28 Given a matching, the algorithm makes at most sta membership queries in the com-
putation of any basic pairing.

Proof. The number of literals in the consequent c of a pairing of [sx, cx] and [si, ci] is bounded
by the number of literals in sx plus the number of literals in cx. By Lemma 25, this is bounded
by sta. ¥

Lemma 29 The algorithm makes O(m′s2taea+1
t + m′2s2t2a+k) membership queries.

Proof. The main loop is executed as many times as equivalence queries are made. In every loop,
the minimisation procedure is executed once and for every element in S, a maximum of tk pairings
are made.

This is: sm′ta︸ ︷︷ ︸
#iterations

×{ sea+1
t︸ ︷︷ ︸

minim.

+ m′︸︷︷︸
|S|

· tk︸︷︷︸
#pairings

· sta︸︷︷︸
pairing

} = O(m′s2taea+1
t + m′2s2t2a+k). ¥

Theorem 30 The algorithm exactly identifies every range restricted Horn expression making
O(m′sta) equivalence queries and O(m′s2taea+1

t + m′2s2t2a+k) membership queries. The running
time is polynomial in the number of membership queries.

Proof. Follows from Lemmas 26 and 29. Notice that the membership calls take most of the
running time. ¥

5 Fully Inequated Range Restricted Horn Expressions

Clauses of this class can contain a new type of literal, that we call inequation or inequality and has
the form t 6= t′, where both t and t′ are any terms. Inequated clauses may contain any number of
inequalities in its antecedent. Let s be any conjunction of atoms and inequations. Then, sp denotes
the conjunction of atoms in s and s 6= the conjunction of inequalities in s. That is s = sp ∧ s6=. We
say s is completely inequated if s6= contains all possible inequations between terms in sp, i.e., if
s 6= = ineq(sp). A clause s → b is completely inequated iff s is. A multi-clause [s, c] is completely

28

inequated iff s is. A fully inequated range restricted Horn expression is a conjunction of completely
inequated range restricted Horn expressions.

Given an interpretation I and a variable substitution θ mapping variables into domain objects of
I, the truth value of the ground inequality literal t · θ 6= t′ · θ is true in I iff t · θ and t′ · θ are
mapped into different objects of I.

Looking at the way the transformation U(T) described in Section 2.6 is used in the proof of
correctness, the natural question of what happens when the target expression is already fully
inequated (and T = U(T)) arises. We will see that the algorithm presented in Figure 4 has to be
slightly modified in order to achieve learnability of this class. In this case, all examples seen or
output by the oracles are fully inequated, and so are the hypotheses H presented by the algorithm.
Next, we will briefly describe what these modifications are, how they affect the proof of correctness
and what the new bounds are.

The first modification is in the minimisation procedure. It can be the case that after generalising
or dropping some terms (as it is done in the two stages of the minimisation procedure), the result
of the operation is not fully inequated. More precisely, there may be superfluous inequalities that
involve terms not appearing in the atoms of the counterexample’s antecedent. These should be
eliminated from the counterexample, yielding a fully inequated minimised counterexample.

The second (and last) modification is in the computation of a pairing. Given a matching σ and
two multi-clauses [sx, cx] and [si, ci], its pairing [s, c] is computed as:

s = ineq(lgg|σ (sp
x, sp

i)) ∪ lgg|σ (sp
x, sp

i)

c = lgg|σ (sp
x, ci) ∪ lgg|σ (cx, sp

i) ∪ lgg|σ (cx, ci).

Notice that inequations in the antecedents are ignored. The pairing is computed only for the atomic
information, and finally the fully inequated pairing is constructed by adding all the inequations
needed. Exactly the same matchings as in the algorithm for range restricted Horn expressions are
considered. That is, they have to be basic and they have to agree with the lgg table of sp

x and sp
i .

The proof of correctness uses the fact that the two modifications above imply that minimised
counterexamples and pairings are fully inequated. Thus, every multi-clause in the sequence S is
fully inequated. The rest of the proof is very similar to the one presented in Section 4. Its main
aim consists in guaranteeing that every [s, c] in S violates one clause in T and that no two different
elements [s1, c1] and [s2, c2] in S violate the same clause of T , thus bounding the length of S by
m, the number of clauses in the target expression T . The bounds on the number of queries are
derived in the same fashion as in Section 4. Hence, we present the following theorem. Notice the
exponential dependence on t disappears.

Theorem 31 The modified algorithm exactly identifies every fully inequated range restricted Horn
expression making O(msta) calls to the equivalence oracle and O(ms2taea+1

t + m2s2t2a+k) to the
membership oracle. The running time is polynomial in the number of membership queries.

Complete details and proof can be found in [AK00].

6 Comparison of results

Class EntEQ EntMQ

Result in [Kha99b] RRHE O(mstt+a) O(ms2tt+aea+1
t + m2s2t3t+2a)

Our result RRHE O(mstt+a) O(ms2tt+aea+1
t + m2s2t2t+k+2a)

Our result FIRRHE O(msta) O(ms2taea+1
t + m2s2t2a+k)

29

This table contains the results obtained in [Kha99b] and in this paper for the respective learn-
ing algorithms. RRHE stands for Range Restricted Horn Expressions and FIRRHE for Fully
Inequated Range Restricted Horn Expressions.

In the case of RRHE, the parameter m′ has been substituted by its upper bound mtt. There is
an exponential dependence on the parameters a and t. Focusing only on t, we notice that in the
number of membership queries the term t3t+... appears in the result of [Kha99b]. This has been
improved to t2t+k+... in our version and it constitutes one of the main contributions of this paper.
Notice that the exponential dependence on t disappears in the case of FIRRHE.

References

[AK00] M. Arias and R. Khardon. Learning Inequated Range Restricted Horn Expressions.
Technical Report EDI-INF-RR-0011, Division of Informatics, University of Edinburgh,
March 2000.

[Ari97] Hiroki Arimura. Learning acyclic first-order Horn sentences from entailment. In Proceed-
ings of the International Conference on Algorithmic Learning Theory, Sendai, Japan,
1997. Springer-Verlag. LNAI 1316.

[DRB92] L. De Raedt and M. Bruynooghe. An overview of the interactive concept learner and
theory revisor CLINT. In S. Muggleton, editor, Inductive Logic Programming. Academic
Press, 1992.

[FP93] M. Frazier and L. Pitt. Learning from entailment: An application to propositional Horn
sentences. In Proceedings of the International Conference on Machine Learning, pages
120–127, Amherst, MA, 1993. Morgan Kaufmann.

[Kha99a] R. Khardon. Learning function free Horn expressions. Machine Learning, 37:241–275,
1999.

[Kha99b] R. Khardon. Learning range restricted Horn expressions. In Proceedings of the Fourth
European Conference on Computational Learning Theory, pages 111–125, Nordkirchen,
Germany, 1999. Springer-verlag. LNAI 1572.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987. Second Edition.

[MF92] S. Muggleton and C. Feng. Efficient induction in logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

[MR94] Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 19 & 20:629–680, May 1994.

[Plo70] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,
1970.

[RS98] K. Rao and A. Sattar. Learning from entailment of logic programs with local vari-
ables. In Proceedings of the International Conference on Algorithmic Learning Theory,
Otzenhausen, Germany, 1998. Springer-verlag. LNAI 1501.

[RT98] C. Reddy and P. Tadepalli. Learning first order acyclic Horn programs from entailment.
In International Conference on Inductive Logic Programming, pages 23–37, Madison,
WI, 1998. Springer. LNAI 1446.

[Sha83] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.

[Sha91] E. Y. Shapiro. Inductive inference of theories from facts. In J. L. Lassez and G. D.
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages 199–
255. The MIT Press, 1991.

30

