
Proofs About Lists Using Ellipsis

Alan Bundy and Julian Richardson?

Institute for Representation and Reasoning
University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, Scotland.
a.bundy@ed.ac.uk,julian.richardson@ed.ac.uk

Abstract. In this paper we explore the use of ellipsis in proofs about
lists. We present a higher-order formulation of elliptic formulae, and de-
scribe its implementation in the λClam proof planner. We use an un-
ambiguous higher-order formulation of lists which is amenable to formal
proofs without using induction, and to display using the familiar ... no-
tation.

1 Introduction

A notation often used in informal mathematical proofs is ellipsis (the dots in
a1 + ... + an). Not only does the use of ellipsis make many proofs much easier
to understand, but it also naturally lends itself to theories where induction has
been replaced by suitable axioms.

Ellipsis can be used to abbreviate many different kinds of formulae; in this
paper, we explore the use of ellipsis in proofs about lists. This allows us to
address important issues in the automatic treatment of ellipsis and, while we do
not extensively consider it here, can be extended by applying fold functions (see
for example equation (2) below and §11) to reasoning about elliptic formulae in
which the main connective is not list cons. We present a higher-order formulation
of elliptic formulae, and describe its implementation in the λClam proof planner
[8]. To resolve the ambiguities inherent in elliptic representation, we use an
underlying unambiguous representation which is portrayed by ellipsis. We define
a higher-order function 2 which represents a list by the length of the list and
a function which takes a natural number n and returns the nth member of the
list.

Displaying proofs in elliptic notation poses interesting challenges. One step of
a proof in the elliptic notation may require several steps in the implementation.
The display mechanism can itself perform quite sophisticated rewriting in order
to get a useful portrayal of a formula. The portrayal system cannot just be bolted
on top of the theorem prover but must itself influence the way in which proofs
are carried out; ensuring that formulae are in a form for which elliptic portrayal
is effective imposes restrictions on the order in which proof steps are applied.
? The authors gratefully acknowledge the support of EPSRC grants GR/L/11724 and

GR/M/45030, and the comments of their colleagues in the Mathematical Reasoning
Group. We would also like to thank the referees for their insightful comments.

2 A Motivating Example

We consider two alternative definitions of a foldl function, one a recursive defi-
nition, the other an elliptic definition. The recursive definition is given in (1).

foldl(⊗, A, []) = A

foldl(⊗, A, [H|T]) = foldl(⊗, A⊗H,T) (1)

How quickly can you spot what this function does? Compare this with an elliptic
definition:

foldl(⊗, A, [E1, E2, . . . , En]) = (. . . ((A⊗ E1)⊗ E2)⊗ . . .⊗ En) (2)

Do you find that easier to understand?
If you are like us, you find (2) much easier to understand than (1). In fact,

one can argue that (2) is the real meaning of foldl, and (1) is merely the best
way to represent this meaning in most logics. Unfortunately, (2) is not normally
available because ellipsis is not usually a legal part of the syntax.

We will call formulae like (2) schematic, because we can think of it as a
schema standing for an infinite number of formulae: one for each n. Imagine we
had a logic in which schematic formulae were legal syntax and in which (2) was
the definition of foldl. We will call this a schematic logic. Such a logic was used
in [1] to represent generalised proofs. From time to time other people propose
such logics, e.g. [6].

We can use definition (2) to prove the following theorem:

foldl(⊗, A, [E1, . . . , En−1, En]) = foldl(⊗, A, [E1, . . . , En−1])⊗ En

This is a trivial theorem in the schematic logic. It requires just two applications of
definition (2). We must only be careful to insert the condition that 1 ≤ n, so that
the right hand side is meaningful. By contrast the usual inductive proof using
(1) is less immediately understandable as it requires induction and choosing an
appropriate instantiation for the A in the induction hypothesis.1

It seems that schematic definitions and proofs that use them can be easier to
understand than their regular counterparts. It is often possible to avoid induction
by using a generalised schematic proof, i.e. one in which ellipsis is used in the
proof as well as the formulae.

There are several problems which must be solved to make this possible:

1. Ellipsis can be ambiguous. There has to be a mechanism for deciding what
is elided in the For example, what is meant by [E2, ..., E16]? Does the list
have 15, 8, 4 or some other number of elements? In the preceding examples,
the meaning of the ellipsis is clear, but in general it may be necessary to
restrict the use of ellipsis to those cases that are unambiguous, if we can
decide what those are.

1 If A is not universally quantified in the conjecture, then an additional generalisation
step is required in the inductive proof.

2. It is necessary to keep track of conditions, like 1 ≤ n in the proof above,
which are needed to ensure that schematic formulae are well formed. This
can get quite hard.

3. We might want to translate the resulting schematic proof into a proof in a
regular logic. Writing the tactics for this would be a challenge.

In the sections which follow, we present a representation of lists which lends
itself both to formal proof and to elliptic proof and portrayal. To address (1)
above, we do not consider the input of formulae which contain ellipsis, but aim
instead merely to portray formulae using ellipsis in a predictable way which
is unambiguous to the reader. We address (2) by disregarding well-formedness
conditions in our initial implementation and checking manually to ensure that
ill-formed formulae do not appear in the proof. The proofs we construct are
proofs in a higher-order logic, so no translation is necessary to satisfy (3) above.

3 The Representation of Ellipsis

3.1 The Ambiguity of Ellipsis

The first problem in formalising ellipsis is its inherent ambiguity. The reader of
a formula containing ellipsis has to induce a pattern from the expressions on
either side of the dots. For instance, it is necessary to induce that a1 + . . .+ an
means

∑n
i=1 ai and not

∑n/2
i=1/2 a2.i, say, i.e. that the numbers go up in ones

not twos — or threes — or in some more complicated pattern. One can try to
disambiguate ellipsis by putting in more context, e.g. a1 + a2 + . . . + an, but
some ambiguity will always remain.

More importantly, it is hard to see how we can ensure that a “proof” is in fact
a proof unless it can be expressed in an unambiguous internal representation.

3.2 An Unambiguous Representation

If an unambiguous internal representation is needed anyway, then why not use
this instead of ellipsis? Ellipsis can be used as an external ‘portray’ form of
this unambiguous representation. This will avoid the need for constant pattern
recognition to figure out what is going on, but externally can be indistinguish-
able. Pattern recognition would be needed only if ellipsis is used when inputting
formulae. This is the view we adopt here.

For n-ary sums and products we already have such an unambiguous notation
in
∑

and
∏

. However, we don’t have such a notation for lists, sequences or other
n-ary operations. The main focus of this paper is to introduce a similar notation
for lists. This notation is then used for representing sequences and any other use
of ellipsis. We will use the notation 2 in a similar way to

∑
or
∏

.
2 is a polymorphic, second order function of type:

2 : (nat→ (nat→ τ))→ list(τ)

Its first argument is the length of the list. It applies the function to each of the
natural numbers 1, 2, etc. up to this length and returns a list of the results, i.e.

2(n, f) = [f(1), . . . , f(n)]

Note that we use function application instead of subscripts, so a subscribed
term ai is represented by a function application a(i).

4 The Axiomatisation of 2

2 can be defined recursively as follows (where :: and <> are infix cons and
append respectively):

2(0, F) = nil

2(s(N), F) = 2(N,F) <> (F (s(N)) :: nil)

Or, alternatively, as:

2(0, F) = nil

2(s(N), F) = F (1) :: 2(N,λi. F (s(i)))

Armed with 2 we can avoid much of the need for recursion in defining new
functions (cf. the work of Bird [2]). All we need is an axiom that says that all
lists can be put in 2 form, i.e.

∀L:list(τ),∃n:nat,∃f : (nat→ τ). L = 2(n, f)

Then we can define len, <> (infix append) and rev as:

len(2(N,F)) = N

rev(2(N,F)) = 2(N,λi. F (s(N)− i))
2(M,F) <> 2(N,G) = 2(M +N, comb(M,F,G))

where comb is defined by:

comb(M,F,G)(i) =
{
F (i) if i ≤M
G(i−M) if i > M

(3)

These definitions should be portrayed, in elliptic notation, as:

len([F (1), . . . , F (N)]) = N

rev([F (1), . . . , F (N)]) = [F (N), . . . , F (1)]
[F (1), . . . , F (M)] <> [G(1), . . . , G(N)]) =[F (1), . . . , F (M), G(1), . . . , G(N)]

5 Proofs using Ellipsis

As so many of the definitions are non-recursive, the proofs can be non-inductive.
In this section we present an example.

5.1 Rotate Length

Consider the classic rotate-length conjecture:

rot(len(L), L) = L

Informally, rot(N,L) returns a list with the same length as the list L but
with the first N elements removed from the front and appended to the end. Here
is a definition of rot using ellipsis:

M ≤ N → rot(M,2(N,F)) = 2(N −M,λi . F (M + i)) <> 2(M,F)

In elliptic notation, this definition translates to:

rot(M, [F (1), ..., F (N)]) = [F (M + 1), ..., F (N)] <> [F (1), ..., F (M)]

Then the 2 proof is:

rot(len(2(N,F)),2(N,F)) = rot(N,2(N,F))
= 2(N −N,λi. F (N + i)) <> 2(N,F)
= 2(0, λi. F (N + i)) <> 2(N,F)
= 2(0 +N, comb(0, λi. F (N + i), F)) (4)
= 2(N,F)

or in elliptic notation:

rot(len([F (1), . . . , F (N)]), [F (1), . . . , F (N)])
= rot(N, [F (1), . . . , F (N)])
= [] <> [F (1), . . . , F (N)]
= [F (1), . . . , F (N)]

For comparison, λClam cannot prove this theorem using its standard induc-
tive strategy. The Clam proof planner [4] is unable to prove this theorem without
using critics [5]. Both Clam and λClam are able to prove the generalised theorem
rot(len(l), l <> m) = (m <> l).

6 Elliptic Portrayal

The key to the success of this technique is that the internal 2 notation can
be portrayed in an intuitively satisfying external elliptic notation. A compari-
son of the number of steps in the formal (four steps), versus the informal (two
steps), proofs above indicates that there need not be a 1-1 correspondence be-
tween proof steps in the formal and informal proofs, and conversion between
the two representations may not be entirely straightforward. Rewriting is often
required to process the internal representation into a portrayable form. For ex-
ample, correct portrayal of (4) above requires two rewrites: 0 + N ⇒ N , and

comb(0, λi. F (N + i), F) ⇒ F . Sometimes internal proof steps cannot be por-
trayed at all and must be omitted, leading to a mismatch between internal and
external proof steps.

Consider, for instance, the definition of append:

2(M,F) <> 2(N,G) = 2(M +N, comb(M,F,G))

which we would like to portray as:

[F (1), . . . , F (M)] <> [G(1), . . . , G(N)]) =
[F (1), . . . , F (M), G(1), . . . , G(N)]

Firstly, note that we do not want the internal function comb to appear at all.
We want to evaluate expressions like comb(M,F,G)(M + N) to G(N), which
requires the rewriting:

comb(M,F,G)(M +N)⇒ G(M +N −M)
⇒ G(N)

In general, there is no limit to the amount of rewriting that might be required
here. A lot of conjectures can be proved, however, by normalising arithmetic
expressions when possible, and applying a few rewrite rules concerning comb
and similar functions.

Secondly, note that which elements of the list we portray is very context
sensitive. We do not always want to portray just the first and last elements,
but also the elements either side of significant boundaries. In general, detecting
such critical boundaries involves solving inequalities over the natural numbers
modulo some domain theory. Inequality reasoning is not implemented in the
current system. This limits both portrayal and proof to a small but interesting
class of examples.

7 Implementation

We have implemented a system for reasoning about ellipsis in lists in the higher-
order proof planner, λClam [8]. λClam provides a convenient basis for our im-
plementation because we need to reason carefully about higher-order functions
and variable scope; correct reasoning about functions and variable scope is built
into λClam’s underlying meta-theory.

The implementation consists of a number of proof planning methods [3] and
some code for portraying elliptic formulae.

7.1 Portrayal

The bulk of the work which is necessary during portrayal is normalisation of
arithmetic expressions. For example, portraying 2(n − (m + (n − 1)) + (m +
1 + n), F) as the elliptic term [F (1), ..., F (n − (m + (n − 1)) + (m + 1 + n))] is

both ugly and destroys the simplicity of presentation which is the main point of
the exercise. The first step in elliptic portrayal is therefore to simplify the first
argument as much as possible using a procedure which normalises expressions
built from positive integer constants, variables, + and −. The above example is
correctly portrayed by our implementation as [(F 1), ..., (F (n+ 2))].

7.2 Methods

λClam was extended with a new proof planning method: boxintro, which con-
verts conjectures about lists in the standard notation to conjectures about lists
in the 2 notation. Every universal quantifier ∀ l : list(τ) is replaced by two
quantifiers ∀n : nat ∀f : nat → τ , and the occurrences of l which are in this
quantifier’s scope are replaced by 2(n, f). Occurrences of nil in the conjecture
are replaced by 2(zero, (λx . x)).

In addition, λClam’s symbolic evaluation (exhaustive rewriting) method has
been modified to apply equations which simplify expressions involving natural
numbers before other equations.2 This is necessary in order to help the portrayal
code simplify arithmetic expressions as soon as possible and thereby avoid por-
trayals such as [F1(s(len([F1(1), ...F1(V0)]))), ..., F1(V0)], which was produced by
an early version of the system (and in fact turned out to be [], a fact which is
only apparent after equation (length3) (see below) has been applied).

In the following sections we give some example output from the system, and
discuss the issues it raises.

8 An Example: The Rotate Length Theorem

The rotate-length example of §5.1 cannot be proved by the standard version of
λClam.3 Using ellipsis, it is proved automatically by λClam using only repeated
rewriting. For clarity, in the presentation below, we have removed quantifiers,
written equality in infix form, and written function applications as f(x) instead
of f x. The elliptic parts of the presentation are however as produced by the
system.

The following rewrite rules are used:

len([F (1), ..., F (N)])⇒ N (length3)
rot(M, [F (1), ..., F (N)])⇒

[F (M + 1), ..., F (N)] <> [F (1), ..., F (M)] (rot1)
N −N ⇒ 0 (minus4)
[F (1), ..., F (N)] <> [G(1), ..., G(M)]⇒

[F (1), ..., F (N), G(1), ..., G(M)] (box3)
0 +X ⇒ X (pluszeroleft)
2(N, (comb(0, F,G)))⇒ 2(N,G) (combdef2)
X = X ⇒ trueP (idty)

2 λClam applies the equations exhaustively but does not currently try to reduce arith-
metic expressions to a normal form.

3 Clam can prove it but only with the aid of a critic.

λClam automatically constructs the proof below. In this presentation, we use
the notation ⇓ name to indicate application of a rewrite rule (name).

` rot(len([F1(1), ...F1(V0)]), [F1(1), ...F1(V0)] = [F1(1), ...F1(V0)])
⇓ length3

` rot(V0, [F1(1), ...F1(V0)]) = [F1(1), ...F1(V0)]
⇓ rot1

` [] <> [F1(1), ...F1(V0)] = [F1(1), ...F1(V0)]
⇓ minus4

` [] <> [F1(1), ...F1(V0)] = [F1(1), ...F1(V0)]
⇓ box3

` [F1(1), ...F1(V0)] = [F1(1), ...F1(V0)]
⇓ pluszeroleft

` [F1(1), ...F1(V0)] = [F1(1), ...F1(V0)]
⇓ combdef2

` [F1(1), ...F1(V0)] = [F1(1), ...F1(V0)]
⇓ idty
` trueP

Three proof steps — application of equations minus4, pluszeroleft, and
combdef2 — do not change the portrayed form of the proof. They should there-
fore be completely suppressed, or only reported briefly.4

9 Results

All of the theorems about lists in the standard corpus of Clam were imported
into λClam. Systematic tests showed that our initial implementation of ellipsis
proves, without list induction, 50% of the test theorems which λClam proves with
list induction. The results are tabulated in figure 1. One additional theorem (the
last one in figure 1) was added to the test set; the ungeneralised form which was
presented in §5.1 of the rotate-length conjecture.

The tested version of λClam was unable to prove the member examples
because of a problem using the definition of member which is suitable for elliptic
proofs —member(x,2(n, F))↔ ∃i ≤ n . x = F (i). We expect to fix this problem
soon.

We plan to increase this 50% figure in three steps:

1. Fixing the problem which prevented the application of the elliptic definition
of member.

2. Implementation of a method for normalising arithmetic expressions in λClam.
Currently, the portrayal code is able to normalise arithmetic expressions but
λClam is not.

4 It is interesting to ponder to what extent there is a correspondence between these
“null” proof steps and proof steps which would be considered “trivial” by a human.

3. Implementation of conditional rewriting and methods for solving simple in-
equalities. This third step should enable the system to prove using ellipsis
all of the theorems that λClam can prove using induction, and more besides.

Conjecture Ellipsis List Induction

l <> nil = l Y Y

reverse(l) <> reverse(m) = reverse(m <> l) Y

l <> (m <> n) = (l <> m) <> n Y

l = m→ (x <> l) = (x <> m) Y

len(l <> m) = len(m <> l) Y Y

len(l) = len(reverse(l)) Y Y

len(l <> m) = len(l) + len(m) Y Y

member(x, l)→ member(x, l <> m) Y

member(x,m)→ member(x, l <> m) Y

member(x, l) ∨member(x,m)→ member(x, l <> m) Y

nth(n, nil) = nil Y Y

qrev(l, nil) = rev(l) Y

qrev(l,m) = rev(l) <> rev(m) Y Y

reverse(x :: nil) = x :: nil Y Y

reverse(l <> (x :: nil)) = x :: reverse(l) Y

reverse(l) <> (x :: nil) = reverse(x :: l) Y

rot(len(l), l) = l Y

Fig. 1. Performance of λClam with ellipsis versus list induction proof strategies on a
subset of Clam’s list theory. Conjectures which are proved are marked with a Y in the
relevant column. For space reasons, we omit quantifiers. In the conjectures above, all
free variables are universally quantified (l,m, and n are quantified over list(nat) and x
is quantified over nat).

Note that some of the elliptic proofs still use induction over the natural num-
bers. For example, the proof that len(l <> r) = len(r) + len(l) uses induction
over natural numbers after the use of ellipsis in order to prove the commutativity
of addition.

An interesting failed proof attempt is appreverse:

∀l,m list . reverse(l) <> reverse(m) = reverse(m <> l)

The proof attempt stumbles when it is unable to prove:

2(n+m, comb(n, (λi.F (n− i+ 1)), (λi.G(m− i+ 1)))) =
2(m+ n, (λi.(comb(m,G,F)(m+ n− i+ 1))))

Proof of this goal is difficult because to make the two sides of the equality syn-
tactically equal, we must rewrite the application term (λi.(comb(m,G,F))) (m+

n − i + 1) to a comb term. This involves reasoning about inequalities to decide
the values of i which cause the application term to fall into either the first or
the second case of the definition of comb (3).

10 Discussion

As noted in §7.2, the need for a clear elliptic presentation of a proof can affect
the order in which proof steps are carried out. If the set of rewrite rules which is
applied during the proof is not confluent, then the changes caused by reordering
the application of rewrite rules in the proof can be significant, and can lead
for example to different lemmas being applied or to failure of the proof. This
possibility of causing fundamental changes in the proof indicates that proof
portrayal cannot be relegated to a “pretty-printing” role but must instead be
considered at the time the conjecture is proved.

Some functions do not easily lend themselves to representation in the 2

formulation, for example flatten over arbitrarily nested lists. There may be a
correspondence between such difficult examples and recursive definitions which
are difficult to understand.

11 Related work

We briefly mentioned in (§1) that our approach can be extended by means of the
higher-order fold function to the representation and manipulation of formulae
involving ellipsis where the main connective is not list cons. If the function ⊗
is associative, then the portrayal in equation (2) can be simplified by removing
the brackets — foldl(⊗, a,2(n, F)) is portrayed as a ⊗ F (1) ⊗ ... ⊗ F (n).
Such an approach produces a similar formulation to the “Three Dots Language”
(TDL) presented in [7], in which (following the terminology of [7]) the iteration
star “∗” is essentially a higher-order fold function (compare the equations (1)
defining foldl above with the expansion equations in [7, p.231]), and the iteration
counter “ĉ” represents lambda abstraction. For example, the elliptic formula
∀x∗∃d . (x1 ·x1 + ...+x1 ·xn ≤ ab+k · ... ·ad+k) is represented in TDL by equation
(5) below (equation 13 of [7, p.237]) and in our formalism by (6).

∀x∗∃d . (((x1 · xĉ) +∗ ĉ, 1..n) ≤ (aĉ+k ·∗ ĉ, b..d)) (5)
∀Fx∃d . foldl(λzλw.x(1) · z + w, 0,2(n, (λ i . x(i)))) ≤ (6)

foldl(λzλw.z · w, 1,2(d− b+ 1, (λ i . a(b+ k − 1 + i))))

Since TDL concentrates on defining a small mathematical language in which
terms can be reduced to a normal form, it is quite restrictive. Our approach
allows us to represent and manipulate quite general kinds of elliptic formulae
(for example subscripts can be nonconsecutive because of the presence of a comb
operator (which has no equivalent in TDL)). We have tested our formalism in
an automated theorem proving system (λClam).

12 Conclusion

In this paper we have proposed a mechanism for allowing ellipsis in automatic
proofs. The key idea is to use an internal notation in which the ambiguity inher-
ent in elliptic notation is resolved. This uses a second-order functional 2, which
is similar to

∑
and

∏
. Ellipsis is recovered from this notation by portray-like

print routines which hide the internal notation and replace it with ellipsis.
With this notation many functions which normally require recursive defini-

tions can be given explicit ones. As a result induction and generalisation can
be eliminated from many proofs which normally require them. The result is
proofs which seem closer to ordinary mathematical intuitions, in fact, we might
describe these as more ‘informal’ proofs. Axiomatisation of lists using 2 has a
similar flavour to the work described in [2], but the representation and its use
for proofs using ellipsis that we present are new.

A heavy burden is transferred to the portray routines. To present intuitively
satisfying formulae and proofs they must carry out significant rewriting to trans-
form the internal representation into a printable form. They must also make
subtle decisions about which elements of an elliptic sequence are portrayed and
which suppressed. It also may be necessary to rearrange the order in which
rewrite rules are applied. This indicates that in general we need to consider how
to present proofs clearly at the time the proof is constructed; we cannot leave it
to a post-processing step.

References

1. S. Baker. Aspects of the Constructive Omega Rule within Automated Deduction.
PhD thesis, Edinburgh, 1993.

2. R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, pages 5–42. Springer-Verlag, 1987.
International Summer School. Proceedings of the NATO Advanced Study Institute,
Marktoberdorf.

3. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and
R. Overbeek, editors, 9th International Conference on Automated Deduction, pages
111–120. Springer-Verlag, 1988. Longer version available from Edinburgh as DAI
Research Paper No. 349.

4. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.
In M. E. Stickel, editor, 10th International Conference on Automated Deduction,
pages 647–648. Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No.
449. Also available from Edinburgh as DAI Research Paper 507.

5. A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of
Automated Reasoning, 16(1–2):79–111, 1996. Also available as DAI Research Paper
No 716, Dept. of Artificial Intelligence, Edinburgh.

6. E. B. Kinber and A. N. Brazma. Models of inductive synthesis. Journal of Logic
Programming, 9:221–233, 1990.

7. Leon Lukaszewicz. Triple dots in a formal language. Journal of Automated Reason-
ing, 22(3):223–239, March 1999.

8. J.D.C Richardson, A. Smaill, and I.M. Green. System description: proof planning in
higher-order logic with lambdaclam. In C. Kirchner and H. Kirchner, editors, Pro-
ceedings of CADE-15, volume 1421 of Lecture Notes in Computer Science. Springer
Verlag, 1998.

