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A Big Question

® How can machines make sense of
human communication?

® This is a major scientific challenge. Solutions to
the problem will lead to advances such as:

® Richer, more humane interfaces to computers
® Perceptual computers that can interpret their
environment

® Technological enhancements to human-human
interactions (eg effective remote meetings)



A signal-based approach

® Coping with the richness of human
communication means coping with signals
spread across multiple modalities

® Statistical models of signals learned from
streams of multimodal data

® The models and associated algorithms should

® scale to huge amounts of data

® be capable of adapting to data that has not
been annotated or labelled by humans




How close are we!

® Speech recognition works with known
speakers, benign environments or limited
domains:

e Commercial systems for dictation in a quiet
environment (adapted to a particular
speaker) - low error rates (for many users)

® The best research systems for conversational
speech recognition over the phone |5-30%
word error rate; for broadcast news 10-20%
word error rate



How far are we?

® Recognizing speech in a realistic environment:

® No microphones attached to talkers

e Multiple acoustic sources (eg overlapping
talkers)

® Extending the problem:

® Not just a single channel of audio: multiple
microphones, also video information

® Not just speech transcription, but interpretation,
understanding or information access



Overview

® Statistical modelling for speech recognition -
hidden Markov models (HMMs)

® Applying HMM-based approaches to
information extraction from and
summarization of speech

® Multistream models for speech and
multimodal data - processing multiparty
meetings



Hidden Markov Models

® Hidden Markov models (HMMs) form the
foundations of all modern speech recognition
systems (1970s: IDA - Baum/Ferguson/Poritz;

IBM - Jelinek/Bahl/Mercer; CMU - Baker)

® Speech is produced by a hidden sequence of states
which stochastically generate the observed
acoustics (finite state generators)

® Recognition corresponds to finding the state
sequence that generated the observed acoustics
(and hence the phonemes and words)



HMM speech recognition
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HMM acoustic modelling:
achievements

Trainable from huge speech corpora

Divide and conquer approach (context-
dependent modelling)

Automatic adaptation to new talkers
Discriminative training criteria
Confidence and rejection

Years of research have resulted in very well
optimised and engineered systems



HMM acoustic modelling:
challenges

HMMs are a bad model of speech production

Speech is not a simple sequence of discrete
units (“beads on a string”)

The flat hidden structure has limited
expressiveness

Ongoing work at CSTR exploring streamed
models, articulatory feature representations
and richer hidden structures (Simon King,
Mirjam Wester, Joe Frankel)



Information Access from Speech

® Speech-to-text is a very well defined problem... but
it does not address many important issues in
understanding spoken language

® We might want computers to

make an intelligent response to a spoken query

search an archive of audio documents (eg TV and
radio broadcasts)

extract relevant information from a message

summarize speech



Processing recognizer output

® Default approach is to perform speech recognition,
then treat the recognizer output as text

® This works very well for some tasks

® Broadcast news indexing and retrieval (finding
the right clip has no degradation with up to 30%
word error rate)

e Automatic identification of names (accuracy
scales linearly with word error rate)

® | ess well for some others (eg summarizing
meetings)
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Named entity identification
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About 9% of broadcast news is hames

HMM/n-gram model of names and classes
(person name, etc.)

Some technicalities (smoothing, multi-word
names)

89% precision and recall on hand transcription,
/7% on recognizer output (21% VVER)



Using prosodic information

® Prosodic structure is observed in the energy,
intonation and timing of speech

® |nformation about emotion, syntax, turn-taking

® Features such as pitch contour and durational
information can predict structural features
such as boundaries and keywords

® Many candidate prosodic features - select
automatically for a given task (eg by Parcel)

® Used successfully in sentence/topic
segmentation, speech summarization



Speech summarization

[Source] >[ Intermediate ]—«>[Summary]
J extraction representation text

rewriting

® Keyword extraction from voicemail messages

e Automatic selection of lexical and prosodic
features, pattern classification approach

e |0% improvement using prosodic features

® Broadcast news summarization

e How far do text-based extraction methods
transfer to broadcast news!?



Structural features

Extractive summarization of text works best
using both structural and content features:
sentence position, sentence length, word
distributions,...

Structural features are easy to obtain in text
(markup); they must be inferred in speech

Sentence boundary identification - HMMs of
lexical and prosodic features (esp. pause)

Topic segmentation - HMM approaches; also
maximum entropy modelling



Broadcast nhews summarization

® For text news, one or two structural features
strongly predict which sentences to extract

® For broadcast news a larger set of content and
structural features are required

® Dependence on style (eg read news vs
spontaneous interviews)

® Relatively little degradation with word error rate

® Extraction is the easy part of summarization;
generation of coherent summaries is harder....



Multiparty meetings

® Development of multimodal approaches to
support human interaction in meetings (M4
and AMI projects)

® |nstrumented meeting room. Capture
multiparty meetings using multiple
microphones, multiple video cameras, PC
VGA capture, digital pens, e-beam whiteboard
- all time-synchronized

® Technology targets: meeting browsers,
remote meeting assistants






Right | didn’t mean to imply that

Yeah

that we - that we shouldn’t discuss this now, but I'm - I'm
just saying that

Oh not right now, but | mean in the future. So at this
meeting with Liz

Right

| - you know - | mean

Right

| - 1 do - I'd like to - | like that stuff
Sure sure

So when is she showing up!?

Well, | mean, they’re coming in April

April. OK

Right. But, um (Hand transcript) © |



right yeah race i didn’t mean imply that that we'd did
that we should that that’s just now but i'm i’'m saying that
oh not right now i mean in the future

right

so at this meeting with with you know i mean

right

i i do i'd like to i'd like to stop

sure sure

when she showing

well i mean they’re coming in april

april but in right

ight but
et Pt (ASR Output)



Meeting Browser

Source localization
Meeting event recognition
o Speech recognition

i =

Topic segmentation

Object tracking |-
Meeting modelling

Summarization
Multimodal fusion

Discourse Analysis
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Modelling speaker interactions

mr04: Hand-marked speaker turns vs. time + auto/manual boundaries
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® Much of a meeting’s content is contained in
the interaction of participants, as well as in
the words spoken

® Browse and segment meetings based on
speaker interaction patterns

® Use finite state statistical models for such
patterns



Meeting Event Detection

Combine feature streams (speech, video,
handwriting) to predict events in meetings

Pilot study: detection of meeting actions
(discussion, presentation, monologue,...) from a
set of recorded meetings (M4 project)

Features - speaker turn patterns, FO, rate,
energy, lexical features

HMM - treat the features as a single integrated
feature vector - 44% action error rate



Multistream modelling

Multistream dynamic Bayesian network
(DBN) model (generalization of HMMs)

Richer hidden structure, distributed state
representation

Feature streams processed independently and
asynchronously

Much greater degree of modelling flexibility

Action error rate of around 9%



Multistream DBN




Multistream models

® Multistream models are well matched to
multimodal data and audio-video speech
recognition

® And they are well-matched to multiple
channel recordings

® But they also offer a more sophisticated
model of speech generation - no more “beads
on a string” - a framework to develop models
of speech better matched to what we know
from experimental phonetics



Outlook

Similar models at different levels - currently
HMMs and other finite state models

Integration of multiple feature streams -
multimodality, use of prosody, multichannel
recordings

Richer statistical models - eg dynamic Bayesian
networks (also latent variable models)

Data-driven feature extraction - why should
signal processing be separate from modelling?

All this needs well-annotated data collections



Conclusion

Signal-based approaches to human
communication are powerful at several levels

To understand human communication in real
environments we need to make use of all
observable aspects of communications -
prosodics, interaction, other modalities

Richer, more succinct models are required -
large HMM systems simply “describe” the data

An interdisciplinary problem - collaborations
can be developed through common data sets
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